• 제목/요약/키워드: flexural and compressive members

검색결과 99건 처리시간 0.019초

Review of design parameters for FRP-RC members detailed according to ACI 440.1R-06

  • Jnaid, Fares;Aboutaha, Riyad
    • Computers and Concrete
    • /
    • 제11권2호
    • /
    • pp.105-121
    • /
    • 2013
  • This paper investigates the parameters that control the design of Fiber Reinforced Polymer (FRP) reinforced concrete flexural members proportioned following the ACI 440.1R-06. It investigates the critical parameters that control the flexural design, such as the deflection limits, crack limits, flexural capacity, concrete compressive strength, beam span and cross section, and bar diameter, at various Mean-Ambient Temperatures (MAT). The results of this research suggest that the deflection and cracking requirements are the two most controlling limits for FRP reinforced concrete flexural members.

강섬유보강 콘크리트의 휨인장강도 특성을 고려한 휨강성 평가 (Evaluation of Flexural Stiffness Considering Flexural Tensile Strength of Steel Fiber Reinforced Concrete)

  • 홍건호;정승원
    • 대한건축학회논문집:구조계
    • /
    • 제35권8호
    • /
    • pp.131-138
    • /
    • 2019
  • Since concrete has a low tensile strength compared to the compressive strength, reinforced concrete flexural members represent easy crack occurance under a small load. In order to overcome this problem, steel fiber reinforced concrete has been developed to compensate the tensile strength and brittleness of members. However, in the design formula of the domestic building code, it is not specified in the design formula reflecting the material characteristics. Therefore, the field application of the steel fiber reinforced concrete have had many restrictions. In this study, a flexural tensile strength model of steel fiber reinforced concrete is proposed by collecting and analyzing the material properties of material test results conducted by various researchers, and verified by the test results of cracking and stiffness evaluation of flexural members based on the proposed model. As a result of this study, the flexural tensile strength model of steel fiber reinforced concrete which can reflect the mixing ratio and aspect ratio of the steel fiber was proposed and the validity of the proposed material model equation was evaluated from the load-deflection relationship in the flexural test of the slab member.

Flexural analysis of steel fibre-reinforced concrete members

  • Chalioris, Constantin E.;Panagiotopoulos, Thomas A.
    • Computers and Concrete
    • /
    • 제22권1호
    • /
    • pp.11-25
    • /
    • 2018
  • A numerical approach for the evaluation of the flexural response of Steel Fibrous Concrete (SFC) cross-sections with arbitrary geometry, with or without conventional steel longitudinal reinforcing bars is proposed. Resisting bending moment versus curvature curves are calculated using verified non-linear constitutive stress-strain relationships for the SFC under compression and tension which include post-peak and post-cracking softening parts. A new compressive stress-strain model for SFC is employed that has been derived from test data of 125 stress-strain curves and 257 strength values providing the overall compressive behaviour of various SFC mixtures. The proposed sectional analysis is verified using existing experimental data of 42 SFC beams, and it predicts the flexural capacity and the curvature ductility of SFC members reasonably well. The developed approach also provides rational and more accurate compressive and tensile stress-strain curves along with bending moment versus curvature curves with regards to the predictions of relevant existing models.

Flexural behavior of concrete beams reinforced with aramid fiber reinforced polymer (AFRP) bars

  • Kim, Min Sook;Lee, Young Hak;Kim, Heecheul;Scanlon, Andrew;Lee, Junbok
    • Structural Engineering and Mechanics
    • /
    • 제38권4호
    • /
    • pp.459-477
    • /
    • 2011
  • Due to the low elastic modulus of FRP, concrete members reinforced with FRP rebars show greater deflections than members reinforced with steel rebars. Deflection is one of the important factors to consider the serviceability of horizontal members. In this study flexural test of AFRP reinforced concrete beams was performed considering reinforcement ratio and compressive strength as parameters. The test results indicated that flexural capacity and stiffness increase in proportion to the reinforcement ratio. The test results were compared with existing proposed equations for the effective moment of inertia including ACI 440. The most of the proposed equations were found to over-estimate the effective moment of inertia while the equation proposed by Bischoff and Scanlon (2007) most accurately predicted the values obtained through actual testing.

Beam-column behavior of concrete filled steel tubes

  • Campione, G.;Scibilia, N.
    • Steel and Composite Structures
    • /
    • 제2권4호
    • /
    • pp.259-276
    • /
    • 2002
  • In the present investigation the experimental and theoretical flexural and compressive behavior of short tubular steel columns filled with plain concrete and fiber-reinforced concrete (FRC) was examined. For a given length of the members, the effects of different geometry and dimensions of the transverse cross-section (square and circular) were investigated. Constituent materials were characterized through direct tensile tests on steel coupons and through compressive and split tension tests on concrete cylinders. Load-axial shortening and load-deflection curves were recorded for unfilled and composite members. Finally, simplified expressions for the calculus of the load-deflection curves based on the cross-section analysis were given and the ultimate load of short columns was predicted.

Strength degeneracy of LWAC and flexural behavior of LWAC members after fire

  • Tang, Chao-Wei
    • Computers and Concrete
    • /
    • 제20권2호
    • /
    • pp.177-184
    • /
    • 2017
  • The characteristics of lightweight aggregate (LWA) with a low specific gravity and high water absorption will significantly change the properties of lightweight aggregate concrete (LWAC). This study aimed at exploring the effect of presoaking degree of LWA on the strength degeneracy of LWAC and flexural behavior of LWAC members exposed to elevated temperatures. The residual mechanical properties of the LWAC subjected to elevated temperatures were first conducted. Then, the residual load tests of LWAC members (beams and slabs) after exposure to elevated temperatures were carried out. The test results showed that with increasing temperature, the decreasing trend of elastic modulus for LWAC was considerably more serious than the compressive strength. Besides, the presoaking degree of LWA had a significant influence on the residual compressive strength and elastic modulus for LWAC after exposure to $800^{\circ}C$. Moreover, owing to different types of heating, the residual load bearing capacity of the slab specimens were significantly different from those of the beam specimens.

FRP 보강 철근콘크리트 부재의 휨모멘트 (Moment Capacity of Reinforced Concrete Members Strengthened with FRP)

  • 조백순;김성도;백성용;최은수;최용주
    • 한국전산구조공학회논문집
    • /
    • 제23권3호
    • /
    • pp.315-323
    • /
    • 2010
  • FRP 보강단면의 공칭휨모멘트 산정에 강도설계법의 적용 타당성을 검토하기 위하여 5종류의 콘크리트 압축응력-변형률 모델을 적용하였으며, 컴퓨터 프로그램 언어를 이용하여 보강단면 휨해석을 실시하였다. 그 결과 보강단면의 휨해석에 콘크리트 압축응력-변형률 모델은 거의 영향을 미치지 않는 것으로 나타났다. 콘크리트 압축변형률이 0.003일 때, 휨해석으로 산정된 보강단면의 휨모멘트와 강도설계법으로 산정된 공칭휨모멘트는 거의 일치하는 것으로 나타났다. 그러나 보강단면의 인장철근비, FRP비, FRP 파단변형률, 콘크리트 압축변형률 등이 상대적으로 낮을수록, 강도설계법은 보강단면의 휨성능을 과대평가하는 것으로 해석결과에 나타났다.

Maximum concrete stress developed in unconfined flexural RC members

  • Ho, J.C.M.;Pam, H.J.;Peng, J.;Wong, Y.L.
    • Computers and Concrete
    • /
    • 제8권2호
    • /
    • pp.207-227
    • /
    • 2011
  • In flexural strength design of unconfined reinforced concrete (RC) members, the concrete compressive stress-strain curve is scaled down from the uni-axial stress-strain curve such that the maximum concrete stress adopted in design is less than the uni-axial strength to account for the strain gradient effect. It has been found that the use of this smaller maximum concrete stress will underestimate the flexural strength of unconfined RC members although the safety factors for materials are taken as unity. Herein, in order to investigate the effect of strain gradient on the maximum concrete stress that can be developed in unconfined flexural RC members, several pairs of plain concrete (PC) and RC inverted T-shaped specimens were fabricated and tested under concentric and eccentric loads. From the test results, the maximum concrete stress developed in the eccentric specimens under strain gradient is determined by the modified concrete stress-strain curve obtained from the counterpart concentric specimens based on axial load and moment equilibriums. Based on that, a pair of equivalent rectangular concrete stress block parameters for the purpose of flexural strength design of unconfined RC members is determined.

A study on compressive strength of concrete in flexural regions of reinforced concrete beams using finite element analysis

  • Cho, Chang-Geun;Hotta, Hisato
    • Structural Engineering and Mechanics
    • /
    • 제13권3호
    • /
    • pp.313-328
    • /
    • 2002
  • Based on the orthotropic hypoelasticity formulation, a triaxial constitutive model of concrete is proposed. To account for increasing ductility in high confinement of concrete, the ductility enhancement is considered using so called the strain enhancement factor. It is also developed a three-dimensional finite element model for reinforced concrete structural members based on the proposed constitutive law of concrete with the smeared crack approach. The concrete confinement effects due to the beam-column joint are investigated through numerical examples for simple beam and structural beam member. Concrete at compression fibers in the vicinity of beam-column joint behaves dominant not only by the uniaxial compressive state but also by the biaxial and triaxial compressive states. For the reason of the severe confinement of concrete in the beam-column joint, the flexural critical cross-section is observed at a small distance away from the beam-column joint. These observations should be utilized for the economic design when the concrete structural members are subjected to high confinement due to the influence of beam-column joint.

휨.압축 하중을 받는 콘크리트 부재의 크기효과 (Size Effect for Flexural Compression of Concrete Specimens)

  • 김진근;이성태;양은익;김민욱;이상순
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.371-376
    • /
    • 1998
  • In this study, the size effect of concrete members subjected to the axial load and bending moment is investigated using a series of C-shaped specimens of which test procedure is similar to those of Hognestad, Hanson, and McHenry's. Main test variable is a size ratio of the specimens(1:1/2:1/4) at the concrete compressive strength of 500kg/㎠. Test results show that the flexural compression strength at failure decreases as the size of specimen increases, that is, the size effect law is present. Model equation is derived using regression analyses with experimental data and it is compared with formulas for compressive strength of cylinders and shear strength of beams without stirrups. Size effects is distinct th following sequence; shear strength of beams without stirrups, compressive strength of C-shaped specimens, compressive strength of cylinders.

  • PDF