• 제목/요약/키워드: flexural adhesion

Search Result 114, Processing Time 0.028 seconds

Evaluation on Rear Fracture Reduction and Crack Properties of Cement Composites with High-Velocity Projectile Impact by Fiber Types (섬유 종류에 따른 시멘트복합체의 고속 비상체 충격에 대한 배면파괴저감 및 균열특성 평가)

  • Han, Sang-Hyu;Kim, Gyu-Yong;Kim, Hong-Seop;Kim, Jung-Hyun;Nam, Jeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.157-167
    • /
    • 2015
  • Cement composites subjected to high-velocity projectile shows local failure and it can be suppressed by improvement of flexural toughness with reinforcement of fiber. Therefore, researches on impact resistance performance of cement composites are in progress and a number of types of fiber reinforcement are being developed. Since bonding properties of fiber with matrix, specific surface area and numbers of fiber are different by fiber reinforcement type, mechanical properties of fiber reinforced cement composites and improvement of impact resistance performance need to be considered. In this study, improvement of flexural toughness and failure reduction effect by impact of high-velocity projectile have been evaluated according to fiber type by mixing steel fiber, polyamide, nylon and polyethylene which are have different shape and mechanical properties. As results, flexural toughness was improved by redistribution of stress and crack prevention with bridge effect of reinforced fibers, and scabbing by high-velocity impact was suppressed. Since it is possible to decrease scabbing limit thickness from impact energy, thickness can be thinner when it is applied to protection. Scabbing of steel fiber reinforced cement composites was occurred and it was observed that desquamation of partial fragment was suppressed by adhesion between fiber and matrix. Scabbing by high-velocity impact of synthetic fiber reinforced cement composites was decreased by microcrack, impact wave neutralization and energy dispersion with a large number of fibers.

Interfacial and Mechanical properties of Different Heat Treated Wood and Evaluation of Bonding Property between Stone and Wood for Rock Bed (열처리 조건에 따른 목재의 계면과 기계적 물성 및 돌침대용 석재/목재간 접착제에 따른 접착력 평가)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Choi, Jin-Yeong;Moon, Sun-Ok;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.16 no.2
    • /
    • pp.69-75
    • /
    • 2015
  • Stone board for the rock bed was needed to reduce weight using thin thickness and reinforced materials. In this work, stone/wood board for rock bed was studied. Stone and wood were attached to reduce total weight of stone for rock bed. For reinforcing wood heat treatment method was used to change surface and mechanical properties. Mechanical strength of heat treated wood increased more than neat condition. The optimum heat treatment condition was set on $100^{\circ}C$ under tensile, flexural loads whereas surface energy was also obtained by contact angle measurement. Optimum adhesive condition was to get the maximum adhesion between stone and wood. Lap shear test was performed for stone/wood board with different adhesives such as amine type epoxy, polyurethane, chloro-rubber and vinyl chloride acetate type. Fracture surface of lap shear test was shown at wood fracture part on stone using amine type epoxy adhesive. It was found that for high adhesion between stone and wood the optimum adhesive was epoxy type for the rock bed.

Influence of 10-MDP concentration on the adhesion and physical properties of self-adhesive resin cements

  • Shibuya, Kazuhiko;Ohara, Naoko;Ono, Serina;Matsuzaki, Kumiko;Yoshiyama, Masahiro
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.4
    • /
    • pp.45.1-45.10
    • /
    • 2019
  • Objectives: Self-adhesive resin cements contain functional monomers that enable them to adhere to the tooth structure without a separate adhesive or etchant. One of the most stable functional monomers used for chemical bonding to calcium in hydroxyapatite is 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). The aim of this study was to evaluate the influence of the10-MDP concentration on the bond strength and physical properties of self-adhesive resin cements. Materials and Methods: We used experimental resin cements containing 3 different concentrations of 10-MDP: 3.3 wt% (RC1), 6.6 wt% (RC2), or 9.9 wt% (RC3). The micro-tensile bond strength of each resin cement to dentin and a hybrid resin block (Estenia C&B, Kuraray Noritake Dental) was measured, and the fractured surface morphology was analyzed. Further, the flexural strength of the resin cements was measured using the three-point bending test. The water sorption and solubility of the cements following 30 days of immersion in water were measured. Results: The bond strength of RC2 was significantly higher than that of RC1. There was no significant difference between the bond strength of RC2 and that of RC3. The water sorption of RC3 was higher than that of any other cement. There were no significant differences in the three-point bending strength or water solubility among all three types of cements. Conclusions: Within the limitations of this study, it is suggested that 6.6 wt% 10-MDP showed superior properties than 3.3 wt% or 9.9 wt% 10-MDP in self-adhesive resin cement.

A Study on the Mechanical and Thermal Properties of Polyketone/Chopped Carbon Fiber Composites

  • Kim, Seonggil;Jeong, Ho-Bin;Lee, Hyeong-Su;Park, Yu-ri;Lee, Rami;Kye, Hyoungsan;Jhee, Kwang-Hwan;Bang, Daesuk
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.345-350
    • /
    • 2019
  • In this study, aliphatic polyketone (PK)/chopped carbon fiber (CCF) composites with various CCF contents were prepared using a modular intermeshing co-rotating twin screw extruder, and their mechanical and thermal properties such as tensile, flexural, and impact strength and thermal conductivity were investigated. The amount of CCF was increased from 0 to 50 wt%. The tensile and flexural strength of the PK/CCF composites increased as the CCF content increased, but the elongation at break and impact strength was lower than that of pure PK. Thermal properties such as heat distortion temperature and thermal conductivity increased as the CCF content increased. Morphological observations revealed that fiber orientation and interface adhesion between the PK and the CCF in the PK/CCF composites were formed due to the twin screw extrusion, which contributed to improving the mechanical and thermal properties of the composites.

Effects of Oxygen Plasma-treated Graphene Oxide on Mechanical Properties of PMMA/Aluminum Hydroxide Composites (산소 플라즈마 처리된 그래핀 산화물이 PMMA/수산화알루미늄 컴포지트의 기계적 물성에 미치는 영향)

  • Kim, Hyo-Chul;Jeon, Son-Yeo;Kim, Hyung-Il;Choi, Ho-Suk;Hong, Min-Hyuk;Choi, Ki-Seop
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.565-573
    • /
    • 2011
  • The nanocomposites containing graphene oxide (GO) were prepared in order to improve the mechanical properties of poly(methyl methacrylate)/aluminum hydroxide (PMMA/AH) composites. GO was prepared from graphite by oxidation of Hummers method followed by exfoliation with thermal treatment. The surface of GO was modified by oxygen plasma in various exposure times from 0 to 70 min to improve interfacial compatibility. Compared with PMMA/AH composites, the nanocomposites containing GO modified with oxygen plasma for the exposure time up to 50 min showed significant increases in flexural strength, flexural modulus, Rockwell hardness, Barcol hardness, and Izod impact strength. The morphology of fracture surface showed an improved interfacial adhesion between PMMA/AH composites and GO, which was properly treated with oxygen plasma. The mechanical properties of nanocomposites were deteriorated by increasing the content of GO above 0.07 phr due to the nonuniform dispersion of GO.

Effect of Bamboo Fiber Grinding on the Mechanical, Thermal, Impact, and Water Absorption Properties of Bamboo/Poly(lactic acid) Biocomposites (대나무/폴리락틱산 바이오복합재료의 기계적, 열적, 충격 및 수분흡수 특성에 미치는 대나무섬유 분쇄의 영향)

  • Cho, Yong Bum;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.13 no.3
    • /
    • pp.121-130
    • /
    • 2012
  • In the present study, bamboo/PLA biocomposites through injection molding process using extruded bamboo/PLA pellets with the fiber contents of 30, 40, and 50 wt% according to the presence and absence of bamboo fiber grinding, respectively, were fabricated and their mechanical, thermal, impact, and water absorption properties were explored. Compared to neat PLA, the flexural modulus, tensile modulus, storage modulus and impact strength of bamboo/PLA biocomposites were considerably increased. In particular, the moduli were further increased by introducing the ground bamboo fibers. In addition, use of the ground bamboo fibers was effective to enhance the long-term water resistance of the biocomposites. The heat treatment temperature of neat PLA was improved by 16% by incorporating the bamboo fibers and the fiber grinding effect was slight. The incorporation of the ground bamboo fibers to PLA did not influence the tensile strength and impact toughness of bamboo/PLA biocomposites.

Mechanical Properties of Polypropylene/Talc Composites Prepared via Solid-State Extrusion (고상 압출된 폴리프로필렌/탈크 복합재료의 기계적 물성)

  • Lee, Jaechoon;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.17 no.4
    • /
    • pp.131-135
    • /
    • 2016
  • We investigated the specific gravity and mechanical property changes of solid-state extruded polypropylene (PP)/talc composites before and after orientation. The specific gravity of the composites increases with increasing the filler contents. The specific gravity of the oriented specimen containing filler in PP matrix is found to be much smaller than that of pre-specimen due to the formation of more micro-voids. It was found that the tensile properties of the composites are increased up to the talc content of 10 wt%, but after the contents exceeding 10 wt%, the tensile properties are decreased. For oriented specimens, the tensile strength of the composites showed monotonously decrease with increasing talc contents. When the contents of talc is 10 wt%, the theoretical values according to Halpin-Tsai equation are close to the experimental values but over 20 wt% of talc contents, the deviation of the experimental values from the theoretical prediction becomes higher. The maximum flexural strength and modulus were observed for PP/talc composites when the talc contents was 10 wt% for both pre-specimen and oriented specimen.

Effect of Coupling Agent and Fiber Loading on Mechanical Behavior of Chopped Jute Fiber Reinforced Polypropylene Composites (황마 단섬유 강화 폴리프로필렌 복합재료의 기계적 거동에 미치는 결합제 및 섬유 Loading의 영향)

  • Rasel, S.M.;Nam, G.B.;Byeon, J.M.;Kim, B.S.;Song, J.I.
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.204-210
    • /
    • 2011
  • In this study, Jute fibers reinforced polypropylene (JFRP) composites were manufactured by injection molding technique. In order to improve the affinity and adhesion between fibers and thermoplastic matrices during manufacturing, Maleic anhydride (MA) as a coupling agent have been employed. Untreated and treated surfaces of jute fibers were characterized using SEM and Fourier transform infrared (FTIR). Physical properties like water absorption rate were studied. Tensile and flexural tests were carried out to evaluate the composite mechanical properties. Tensile test and bending test indicated that JFRP composites show higher strength and modulus than pure PP. In addition, strength and modulus were found to be influenced by the variation of MAPP content (1%, 2%, and 3%). Tensile fracture surfaces were examined using scanning electron microscope. It ensures better interfacial adhesion between fibers and matrix by increasing the percentage of MAPP.

Proposal of Concrete Pull Off Bond Strength Measurement Method for Bridge Deck Overlay (교면 덧씌우기 콘크리트의 인발부착강도(引拔附着强度) 시험법(試驗法) 제안(提案))

  • Kim, Seong-Hwan;Kim, Dong-Ho;Kim, Hyun-Oh;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.149-156
    • /
    • 2003
  • The development and maintenance of a sound bond are essential requirements of concrete repair and replacement. The bond property of a overlay to its substrate concrete during the lifetime is one of the most important performance requirements which should be quantified. A standard or a verified bond strength measurement method is required at field for screening, selecting materials and quality control for overlay or repair materials, but no test method has been adopted as a standard. In this study, a concrete pull off bond strength measurement method for field application is proposed and evaluated. This study compares the splitting tensile test, slant shear test, nipple pipe direct tensile test, flexural adhesion test, briquette tensile test, jumbo nail pull-out test and core pull-off test with their test procedures. From these comparison and investigation, core pull-off test is selected as a main topic of this study because of it's suitability for in situ testing, simplicities in field application and clearness at interface boundary condition. Thus, the proposed core pull off test is evaluated to be the most appropriate method for field application in a simple manner. The fracture surface and fracture mode could be easily determined by visual observation of failure surface of the field specimen. The core pull off test was found to be sensitive to surface condition and latex contents at latex modified concrete.

  • PDF

Effect of the Low Profile Agent and Release Agent on the Surface Morphology and Property of Bulk Mold Compound (저수축제 및 이형제가 벌크몰드컴파운드의 표면형태 및 물성에 미치는 영향)

  • Kim, Sung-Ryong;Kwon, Ki-Joon
    • Journal of Adhesion and Interface
    • /
    • v.12 no.4
    • /
    • pp.144-150
    • /
    • 2011
  • The effect of low profile agent and release agent on the surface and mechanical properties of bulk mold compound were investigated. Atomic content and contact angle of surface were characterized using X-ray photoelectron spectroscopy and contact anglemeter. Surface morphology and surface roughness were obtained using field emission scanning electron microscope and atomic force microscope, respectively. As increasing the low profile agent from 0 to 9.2 wt%, the volume shrinkage and surface roughness decreased from 0.35% to 0.05%, and from $0.27{\mu}m$ to $0.12{\mu}m$, respectively. The increase of release agent from 1.8 wt% to 3.6 wt% resulted in the migration of release agent to sample surface and it increased the surface roughness. The flexural strength and impact strength were decreased approximately 30% as the low profile agent increasing from 5.0 wt% to 9.0 wt%.