• 제목/요약/키워드: flexible transparent film

검색결과 183건 처리시간 0.032초

PVDF 필름 위에 제작된 고전도도 Ag 나노와이어 투명전극 특성 연구 (Characterization of Ag Nanowire Transparent Electrode Fabricated on PVDF Film)

  • 라용호;박혜림;안소연;김진호;전대우;김선욱;이미재;황종희;임태영;이영진
    • 센서학회지
    • /
    • 제28권6호
    • /
    • pp.366-370
    • /
    • 2019
  • In this study, we have successfully fabricated a highly conductive transparent electrode using Ag nanowires, based on piezoelectric polyvinylidene difluoride (PVDF) film, that can be applied as transparent and flexible speakers. The structural morphology of the Ag nanowires was confirmed by a detailed scanning electron microscopy. Ultraviolet-visible spectroscopy demonstrated that the transparent electrode fabricated by the Ag nanowires exhibited a transmittance of above 70%. The transparent electrode also showed very low sheet resistance with high flexibility. We have further developed an anti-oxidation coating layer by using a tetraethyl orthosilicate-poly trimethyloxyphenylsilane (TEOS-PTMS) slurry technique. It was confirmed that the transmittance and sheet resistance of the antioxidant film depends critically on the humidity of the film surface. We believe such Ag nanowire electrodes are a very promising next-generation transparent electrode technology that can be used in future flexible and transparent devices.

비용 효율적인 유연 디스플레이용 무색 투명 폴리이미드 필름 제작 (Cost-efficient Fabrication of Colorless and Optically Transparent Polyimide Film for Flexible Displays )

  • 조다운;김지호;오충석
    • 반도체디스플레이기술학회지
    • /
    • 제22권1호
    • /
    • pp.33-38
    • /
    • 2023
  • As the demand for large flexible displays such as tablet computers continues to rise, there is an increasing need for cost-efficient colorless and optically transparent polyimide film that can meet the desired performance, particularly optical transmittance. In this study, we investigated a detailed procedure for achieving optimal optical transmittance using two different combinations of monomers: 6FDA+BAPB and 6FDA+BPA+TFDB. We employed a design of experiment method to systematically synthesize polymers, allowing for the optimization of optical transmittance. In addition, we were able to achieve uniform thickness in the films by using a doctor blade. By comparing the price and optical transmittance of four different monomer combinations, we obtained fundamental data on the production of polyimide films that can be customized to meet the specific price and performance requirements of manufacturers. This approach enables users to select the most suitable polyimide film based on their desired price and performance parameters while achieving optimal optical transmittance.

  • PDF

유연/투명 필름을 위한 키틴 나노파이버 특성 (Chitin Nanofibers Characterization for Flexible/Transparent Films)

  • 황중국;서응수;장상목;신훈규
    • 한국전기전자재료학회논문지
    • /
    • 제28권12호
    • /
    • pp.797-801
    • /
    • 2015
  • In this study ensuring a filming technology is attempted through dispersion technologies and mixing polymer scaffolds in order to produce films based on the nanowaires obtained from chitin. In addition this study proposes technologies in measuring and improving characteristics of films produced using nanowires and for applying electric conductivity to the films as a chemical and physical manner. Also, a possibility in applications of mass productive films or substrates to producing flexible and transparent films is proposed. In the experiment implemented in this study, it is verified that developments of high strength, high transparency, and high flexibility films can be developed through combining it with producing flexible and transparent films.

탄소나노튜브와 은나노와이어 복합 유연투명전극 필름 기술 (Nanocarbon/silver Nanowire Hybrid Flexible Transparent Conducting Film Technology)

  • 한중탁
    • 한국표면공학회지
    • /
    • 제49권4호
    • /
    • pp.323-330
    • /
    • 2016
  • The flexible transparent conducting films (TCFs) are required to realize flexible optoelectronic devices. 1D nanomaterials such as carbon nanotubes (CNTs), metal nanowires are good candidates to replace indium tin oxide that is currently used to fabricate transparent electrode. Particularly, silver nanowires are used to produce flexible TCFs. In this review, we introduce TCF technologies based on silver nanowires/CNTs hybrid structures. CNTs can compromise drawbacks of silver nanowires for applications in high performance TCFs for optoelectronic devices.

Adhesion Change of AZO/PET Film by ZrCu Insertion Layer

  • Ko, Sang-Won;Jung, Jong-Gook;Park, Kyeong-Soon;Lim, Sil-Mook
    • 한국표면공학회지
    • /
    • 제49권3호
    • /
    • pp.252-259
    • /
    • 2016
  • In order to form an aluminum-doped zinc oxide (AZO) transparent electrode film on a polyethylene terephthalate (PET) substrate used for a flexible display substrate, the AZO transparent electrode was produced at low temperature without substrate heating. Even though the produced electrode showed characteristic optical transmittance of 90 % (at 550 nm) and sheet resistance within $100{\Omega}/sq$, cracks occurred 10 minutes after loading applied 2 mm radius of curvature, and the sheet resistance increased linearly. An insertion layer of ZrCu was formed between the AZO film and the PET substrate to suppress the generation of cracks on the AZO film. It was verified that the crack was not generated 30 minutes after the loading of 2 mm radius of curvature, and no increase in sheet resistance was recorded. There was also not cracks in the dynamic bending test of 4 mm radius, but surface resistance was slightly increased. As a result, the ZrCu insertion film improved the interfacial adhesion between the substrate and AZO film layer without increasing sheet resistance and decreasing transmittance.

Ultrafast and flexible UV photodetector based on NiO

  • Kim, Hong-sik;Patel, Malkeshkumar;Kim, Hyunki;Kim, Joondong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.389.2-389.2
    • /
    • 2016
  • The flexible solid state device has been widely studied as portable and wearable device applications such as display, sensor and curved circuits. A zero-bias operation without any external power consumption is a highly-demanding feature of semiconductor devices, including optical communication, environment monitoring and digital imaging applications. Moreover, the flexibility of device would give the degree of freedom of transparent electronics. Functional and transparent abrupt p/n junction device has been realized by combining of p-type NiO and n-type ZnO metal oxide semiconductors. The use of a plastic polyethylene terephthalate (PET) film substrate spontaneously allows the flexible feature of the devices. The functional design of p-NiO/n-ZnO metal oxide device provides a high rectifying ratio of 189 to ensure the quality junction quality. This all transparent metal oxide device can be operated without external power supply. The flexible p-NiO/n-ZnO device exhibit substantial photodetection performances of quick response time of $68{\mu}s$. We may suggest an efficient design scheme of flexible and functional metal oxide-based transparent electronics.

  • PDF

유연한 투명 전자기 간섭 차폐 필름의 기술개발 동향 (Technical Trends of Flexible, Transparent Electromagnetic Interference Shielding Film)

  • 임현수;오정민;김종웅
    • 마이크로전자및패키징학회지
    • /
    • 제28권1호
    • /
    • pp.21-29
    • /
    • 2021
  • Recently, semiconductor chips and electronic components are increasingly being used in IT devices such as wearable watches, autonomous vehicles, and smart phones. As a result, there is a growing concern about device malfunctions that may occur due to electromagnetic interference being entangled with each other. In particular, electromagnetic wave emissions from wearable or flexible smart devices have detrimental effects on human health. Therefore, flexible and transparent electromagnetic interference (EMI) shielding materials and films with high optical transmittance and outstanding shielding effectiveness have been gaining more attention. The EMI shielding films for flexible and transparent electronic devices must exhibit high shielding effectiveness, high optical transmittance, high flexibility, ultrathin and excellent durability. Meanwhile, in order to prepare this EMI shielding films, many materials have been developed, and results regarding excellent EMI shielding performance of a new materials such as carbon nano tube (CNT), graphene, Ag nano wire and MXene have recently been reported. Thus, in this paper, we review the latest research results to EMI shielding films for flexible and transparent device using the new materials.

Plastic 기판 상의 투명성과 유연성을 지닌 Zinc Oxide 박막 트랜지스터 (Mechanically Flexible and Transparent Zinc Oxide Thin Film Transistor on Plastic Substrates)

  • 박경애;안종현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.10-10
    • /
    • 2009
  • We have fabricated transparent and flexible thin film transistor(TFT) on polyethylene terephthalate(PET) substrate using Zinc Oxide (ZnO) and Indium Tin Oxide (ITO) film as active layer and electrode. The transfer printing method was used for printing the device layer on target plastic substrate at room temperature. This approach have an advantage to separate the high temperature annealing process to improve the electrical properties of ZnO TFT from the device process on plastic substrate. The resulting devices on plastic substrate presented mechanical and electrical properties similar with those on rigid substrate.

  • PDF

Flexible, Transparent Thin-Film Transistors Fabricated by Ink-Jet Printing with Carbon Nanotube-Based Conducting Ink

  • Lee, Yeon-Ju;Lee, Woo-Suk;Jeong, Soo-Kyeong;Choi, Seok-Ju;Kim, Hye-Min;Chun, Jin-Young;Kim, Sung-Ho;Geckeler, Kurt E.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.920-922
    • /
    • 2009
  • Flexible, transparent thin-film transistor with active layers composed of carbon nanotube-based conducting ink were fabricated on a plastic substrate by ink-jet printing. The properties of the formulated conducting ink containing carbon nanotubes, a conducting polymer, and additives were characterized and optimized. The conducting ink was applied to flexible thin-film transistors using ink-jet printing.

  • PDF

Designing Flexible Thin Film Audio Systems Utilizing Polyvinylidene Fluoride

  • Um, Keehong;Lee, Dong-Soo;Pinthong, Chairat
    • International journal of advanced smart convergence
    • /
    • 제2권2호
    • /
    • pp.16-18
    • /
    • 2013
  • In this paper, we develop a method to design a flexible thin film audio systems utilizing Polyvinylidene fluoride. The system we designed showed the properties of increased transparency and sound pressure levels. As an input terminal transparent oxide thin film is adopted. In order to provide dielectric insulation, a transparent insulating oxide thin film is coated to obtain double -layered structure. In the range of visible light, the output from the output of the system showed an increased and improved sound pressure level. The piezoelectric polymer film of polyvinylidene fluoride (PVDF) is used to produce mechanical vibration due to the applied electrical voltage signal. An analog electric voltage signal is transformed into sound waves in the audio system.