• 제목/요약/키워드: flexible spacecraft

검색결과 51건 처리시간 0.025초

Nonlinear stability analysis of porous sandwich beam with nanocomposite face sheet on nonlinear viscoelastic foundation by using Homotopy perturbation method

  • Rostamia, Rasoul;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • 제41권6호
    • /
    • pp.821-829
    • /
    • 2021
  • Nonlinear dynamic response of a sandwich beam considering porous core and nano-composite face sheet on nonlinear viscoelastic foundation with temperature-variable material properties is investigated in this research. The Hamilton's principle and beam theory are used to drive the equations of motion. The nonlinear differential equations of sandwich beam respect to time are obtained to solve nonlinear differential equations by Homotopy perturbation method (HPM). The effects of various parameters such as linear and nonlinear damping coefficient, linear and nonlinear spring constant, shear constant of Pasternak type for elastic foundation, temperature variation, volume fraction of carbon nanotube, porosity distribution and porosity coefficient on nonlinear dynamic response of sandwich beam are presented. The results of this paper could be used to analysis of dynamic modeling for a flexible structure in many industries such as automobiles, Shipbuilding, aircrafts and spacecraft with solar easured at current time step and the velocity and displacement were estimated through linear integration.

상대 운동과 최적화 기법을 이용한 정지궤도 위치유지에 관한 연구 (New Method for Station Keeping of Geostationary Spacecraft Using Relative Orbital Motion and Optimization Technique)

  • 정옥철;노태수;이상철;양군호;최성봉
    • 한국항공우주학회지
    • /
    • 제33권1호
    • /
    • pp.39-47
    • /
    • 2005
  • 본 논문에서는 정지궤도 위성의 상대 운동과 최적화 기법과의 결합을 통해 새로운 형태의 위치유지 기법을 제안하였다. 상대 궤도 운동을 나타내기 위해 궤도 압축방법을 이용하여 비선형 미분 방정식 형태가 아닌 닫힌 해 형태의 모델을 사용하였으며, 매우 정확한 궤도 전파가 가능함을 확인하였다. 기존의 위치유지 기법은 궤도 요소를 이용하여 목표 궤도를 획득함으로써 궤도 형상을 유지하지만, 본 논문에서는 정밀한 위치유지를 위해 위성의 상대 위치를 직접 제어하였다. 최적화 목적 함수의 설정을 통해 다양한 형태의 기동 전략을 수립하였고, 구속 함수를 이용하여 상황에 따른 위치유지 범위를 설정하였다. 이 방법은 최적화 함수의 변경을 통해 다양한 위치유지 기법을 쉽게 적용할 수 있고, 그에 따른 궤도 운동을 분석할 수 있다. 비선형 시뮬레이션을 통해 위성의 위치가 허용범위 내에 적절하게 유지되고 있음을 확인하였다.

Static and dynamic characterization of a flexible scaled joined-wing flight test demonstrator

  • Carregado, Jose;Warwick, Stephen;Richards, Jenner;Engelsen, Frode;Suleman, Afzal
    • Advances in aircraft and spacecraft science
    • /
    • 제6권2호
    • /
    • pp.117-144
    • /
    • 2019
  • High Altitude and Long Endurance (HALE) aircraft are capable of providing intelligence, surveillance and reconnaissance (ISR) capabilities over vast geographic areas when equipped with advanced sensor packages. As their use becomes more widespread, the demand for additional range, endurance and payload capability will increase and designers are exploring non-conventional configurations to meet the increasing demands. One such configuration is the joined-wing concept. A joined-wing aircraft is one that typically connects a front and aft wings in a diamond shaped planform. One such example is the Boeing SensorCraft configuration. While the joined-wing configuration offers potential benefits regarding aerodynamic efficiency, structural weight, and sensing capabilities, structural design requires careful consideration of elastic buckling resulting from the aft wing supporting, in compression, part of the forward wing structural loading. It has been shown already that this is a nonlinear phenomenon, involving geometric nonlinearities and follower forces that tend to flatten the entire configuration, leading to structural overload due to the loss of the aft wing's ability to support the forward wing load. Severe gusts are likely to be the critical design condition, with flight control system interaction in the form of Gust Load Alleviation (GLA) playing a key role in minimizing the structural loads. The University of Victoria Center for Aerospace Research (UVic-CfAR) has built a 3-meter span scaled and flexible wing UAV based on the Boeing SensorCraft design. The goal is to validate the nonlinear structural behavior in flight. The main objective of this research work is to perform Ground Vibration Tests (GVT) to characterize the dynamic properties of the scaled flight vehicle. Results from the experimental tests are used to characterize the modal dynamics of the aircraft, and to validate the numerical models. The GVT results are an important step towards a safe flight test program.

Design of a morphing actuated aileron with chiral composite internal structure

  • Airoldi, Alessandro;Quaranta, Giuseppe;Beltramin, Alvise;Sala, Giuseppe
    • Advances in aircraft and spacecraft science
    • /
    • 제1권3호
    • /
    • pp.331-351
    • /
    • 2014
  • The paper presents the development of numerical models referred to a morphing actuated aileron. The structural solution adopted consists of an internal part made of a composite chiral honeycomb that bears a flexible skin with an adequate combination of flexural stiffness and in-plane compliance. The identification of such structural frame makes possible an investigation of different actuation concepts based on diffused and discrete actuators installed in the skin or in the skin-core connection. An efficient approach is presented for the development of aeroelastic condensed models of the aileron, which are used in sensitivity studies and optimization processes. The aerodynamic performances and the energy required to actuate the morphing surface are evaluated and the definition of a general energetic performance index makes also possible a comparison with a rigid aileron. The results show that the morphing system can exploit the fluid-structure interaction in order to reduce the actuation energy and to attain considerable variations in the lift coefficient of the airfoil.

Thruster Loop Controller design of Sun Mode and Maneuver Mode for KOMPSAT-2 (ICCAS 2004)

  • Choi, Hong-Taek;Oh, Shi-Hwan;Rhee, Seung-Wu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1392-1395
    • /
    • 2004
  • In order to successfully develop attitude and orbit control subsystem(AOCS), AOCS engineer performs hardware selection, controller design and analysis, control logic and interface verification on electrical test bed, integrated system test, polarity test, and finally verification on orbit after launching. Attitude and orbit control subsystem for KOMPSAT-2 consists of standby mode, sun mode, maneuver mode, science mode, and power safe mode to stabilize and to control the spacecraft for performing the mission. The sun mode is usually divided into sun point submode, earth search submode and safe hold submode. The maneuver mode is divided into attitude hold submode and ${\triangle}$ V submode, while the science mode divided into science coarse submode and science fine submode. Moreover, it is added to back-up mode which uses wheels as an actuator for sun mode and maneuver mode. In this paper, we describe the controller design process and the performance of the design results with respect to the sun mode and the maneuver mode based on thrusters as an actuator using on flexible model.

  • PDF

Improving aeroelastic characteristics of helicopter rotor blades in forward flight

  • Badran, Hossam T.;Tawfik, Mohammad;Negm, Hani M.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권1호
    • /
    • pp.31-49
    • /
    • 2019
  • Flutter is a dangerous phenomenon encountered in flexible structures subjected to aerodynamic forces. This includes aircraft, helicopter blades, engine rotors, buildings and bridges. Flutter occurs as a result of interactions between aerodynamic, stiffness and inertia forces on a structure. The conventional method for designing a rotor blade to be free from flutter instability throughout the helicopter's flight regime is to design the blade so that the aerodynamic center (AC), elastic axis (EA) and center of gravity (CG) are coincident and located at the quarter-chord. While this assures freedom from flutter, it adds constraints on rotor blade design which are not usually followed in fixed wing design. Periodic Structures have been in the focus of research for their useful characteristics and ability to attenuate vibration in frequency bands called "stop-bands". A periodic structure consists of cells which differ in material or geometry. As vibration waves travel along the structure and face the cell boundaries, some waves pass and some are reflected back, which may cause destructive interference with the succeeding waves. In this work, we analyze the flutter characteristics of a helicopter blades with a periodic change in their sandwich material using a finite element structural model. Results shows great improvements in the flutter forward speed of the rotating blade obtained by using periodic design and increasing the number of periodic cells.

Dynamic modeling and structural reliability of an aeroelastic launch vehicle

  • Pourtakdoust, Seid H.;Khodabaksh, A.H.
    • Advances in aircraft and spacecraft science
    • /
    • 제9권3호
    • /
    • pp.263-278
    • /
    • 2022
  • The time-varying structural reliability of an aeroelastic launch vehicle subjected to stochastic parameters is investigated. The launch vehicle structure is under the combined action of several stochastic loads that include aerodynamics, thrust as well as internal combustion pressure. The launch vehicle's main body structural flexibility is modeled via the normal mode shapes of a free-free Euler beam, where the aerodynamic loadings on the vehicle are due to force on each incremental section of the vehicle. The rigid and elastic coupled nonlinear equations of motion are derived following the Lagrangian approach that results in a complete aeroelastic simulation for the prediction of the instantaneous launch vehicle rigid-body motion as well as the body elastic deformations. Reliability analysis has been performed based on two distinct limit state functions, defined as the maximum launch vehicle tip elastic deformation and also the maximum allowable stress occurring along the launch vehicle total length. In this fashion, the time-dependent reliability problem can be converted into an equivalent time-invariant reliability problem. Subsequently, the first-order reliability method, as well as the Monte Carlo simulation schemes, are employed to determine and verify the aeroelastic launch vehicle dynamic failure probability for a given flight time.

Improving wing aeroelastic characteristics using periodic design

  • Badran, Hossam T.;Tawfik, Mohammad;Negm, Hani M.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권4호
    • /
    • pp.353-369
    • /
    • 2017
  • Flutter is a dangerous phenomenon encountered in flexible structures subjected to aerodynamic forces. This includes aircraft, buildings and bridges. Flutter occurs as a result of interactions between aerodynamic, stiffness, and inertia forces on a structure. In an aircraft, as the speed of the flow increases, there may be a point at which the structural damping is insufficient to damp out the motion which is increasing due to aerodynamic energy being added to the structure. This vibration can cause structural failure, and therefore considering flutter characteristics is an essential part of designing an aircraft. Scientists and engineers studied flutter and developed theories and mathematical tools to analyze the phenomenon. Strip theory aerodynamics, beam structural models, unsteady lifting surface methods (e.g., Doublet-Lattice) and finite element models expanded analysis capabilities. Periodic Structures have been in the focus of research for their useful characteristics and ability to attenuate vibration in frequency bands called "stop-bands". A periodic structure consists of cells which differ in material or geometry. As vibration waves travel along the structure and face the cell boundaries, some waves pass and some are reflected back, which may cause destructive interference with the succeeding waves. This may reduce the vibration level of the structure, and hence improve its dynamic performance. In this paper, for the first time, we analyze the flutter characteristics of a wing with a periodic change in its sandwich construction. The new technique preserves the external geometry of the wing structure and depends on changing the material of the sandwich core. The periodic analysis and the vibration response characteristics of the model are investigated using a finite element model for the wing. Previous studies investigating the dynamic bending response of a periodic sandwich beam in the absence of flow have shown promising results.

ELECTRICAL GROUND SUPPORT EQUIPMENT (EGSE) DESIGN FOR SMALL SATELLITE

  • Park, Jong-Oh;Choi, Jong-Yoen;Lim, Seong-Bin;Kwon, Jae-Wook;Youn, Young-Su;Chun, Yong-Sik;Lee, Sang-Seol
    • Journal of Astronomy and Space Sciences
    • /
    • 제19권3호
    • /
    • pp.215-224
    • /
    • 2002
  • This paper describes EGSE design for the small satellite such like KOMPSAT-2 satellite. Recent design trend of small satellite and EGSE is to take short development time and less cost. For this purpose, the design for KOMPSAT-2 satellite and EGSE are not much modified from KOMPSAT-1 heritage. It means that it is able to be accommodated the verified hardware and software modules used in KOMPSAT-1 satellite program if possible. The objective of EGSE is to provide hardware and software for efficient electrical testing of integrated KOMPSAT-2 satellite in three general categories. (1) Simulators for ground testing (e.g. solar-simulation power, earth scenes, horizons and sun sensor). (2) Ground station type satellite data acquisition and processing test sets. (3) Overall control of satellite using hardline datum. In KOMPSAT (KOrea Multi-Purpose SATellite) program, KOMPSAT-2 EGSE was developed to support satellite integration and test activities. The KOMPSAT-2 EGSE was designed in parallel with satellite design. Consequently, the KOMPSAT-2 EGSE was based on the KOMPSAT-1 heritage since the spacecraft design followed the heritage. The KOMPSAT-2 baseline was elaborated by taking advantage of experience from KOMPSAT-1 program. The EGSE of KOMPSAT-2 design concept is generic modular design with preference in part selection with commercial off-the-shelf which were proven from KOMPSAT-1 programs, flexible/user friendly operational environment (graphical interface preferred), minimized new design and self test capability.

Cylindrical bending of multilayered composite laminates and sandwiches

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Advances in aircraft and spacecraft science
    • /
    • 제3권2호
    • /
    • pp.113-148
    • /
    • 2016
  • In a whole variety of higher order plate theories existing in the literature no consideration is given to the transverse normal strain / deformation effects on flexural response when these higher order theories are applied to shear flexible composite plates in view of minimizing the number of unknown variables. The objective of this study is to carry out cylindrical bending of simply supported laminated composite and sandwich plates using sinusoidal shear and normal deformation plate theory. The most important feature of the present theory is that it includes the effects of transverse normal strain/deformation. The displacement field of the presented theory is built upon classical plate theory and uses sine and cosine functions in terms of thickness coordinate to include the effects of shear deformation and transverse normal strain. The theory accounts for realistic variation of the transverse shear stress through the thickness and satisfies the shear stress free conditions at the top and bottom surfaces of the plate without using the problem dependent shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of minimum potential energy. The accuracy of the proposed theory is examined for several configurations of laminates under various static loadings. Some problems are presented for the first time in this paper which can become the base for future research. For the comparison purpose, the numerical results are also generated by using higher order shear deformation theory of Reddy, first-order shear deformation plate theory of Mindlin and classical plate theory. The numerical results show that the present theory provides displacements and stresses very accurately as compared to those obtained by using other theories.