• 제목/요약/키워드: flexible robot

검색결과 361건 처리시간 0.026초

Tracking Control of RLFJ Robot Manipulator Using Only Position Measurements by Backstepping Method

  • Ji H. Uh;Jongn H. Oh;Lee, Jin S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.8-13
    • /
    • 1998
  • A tracking controller is presented for RLFJ(rigid link flexible joint) robot manipulators with only position measurements. The controller is developed based on the integrator backstepping design method and on the two observers: the first is simple linear form observer for the filtered link velocity errors and the other for the actuator velocities. The proposed controller achieves exponential tracking of link positions and velocities while keeping all internal signals bounded. It also guarantees exponential convergence of the estimated signals to their actual ones. Finally, simulation results are included to demonstrate the tracking performance.

  • PDF

체내이동형 마이크로 캡술형 내시경 로봇을 위한 Electrostrictive Polymer의 모델링 및 Adaptive fuzzy 알고리듬 개발 (The Modeling and Adaptive fuzzy control of Electrostrictive Polymer for endoscopic microcapsule)

  • 황교일;김훈모;최혁렬;남재도;전재욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.716-722
    • /
    • 2001
  • In this paper, the modeling and control of electrostrictive polymer is introduced for endoscopic microcapsule. The endoscopic microcapsule works in the body, so the material of robot must be no harmful to the body. The electrostrictive polymer satisfies this condition. The modeling and control of endoscope microcapsule must be processed. So the modeling and control of electrostrictive was processed preferentially. The electrostrictive polymer is so flexible that we considered the electrostrictive polymer as flexible membrane. The dynamic equation of flexible membrane is time variant in electrostrictive polymer. It is the reason that the elastic modulus of electrostrictive polymer is very small and changes as deformation of electrostrictive polymer. The control algorithm must overcome these characteristics. So the algorithm of adaptive fuzzy control was used to control. In this paper, we introduced the dynamic modeling and control of electrostrictive polymer. And its deformation is introduced.

  • PDF

Impedance Control of Flexible Base Mobile Manipulator Using Singular Perturbation Method and Sliding Mode Control Law

  • Salehi, Mahdi;Vossoughi, Gholamreza
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권5호
    • /
    • pp.677-688
    • /
    • 2008
  • In this paper, the general problem of impedance control for a robotic manipulator with a moving flexible base is addressed. Impedance control imposes a relation between force and displacement at the contact point with the environment. The concept of impedance control of flexible base mobile manipulator is rather new and is being considered for first time using singular perturbation and new sliding mode control methods by authors. Initially slow and fast dynamics of robot are decoupled using singular perturbation method. Slow dynamics represents the dynamics of the manipulator with rigid base. Fast dynamics is the equivalent effect of the flexibility in the base. Then, using sliding mode control method, an impedance control law is derived for the slow dynamics. The asymptotic stability of the overall system is guaranteed using a combined control law comprising the impedance control law and a feedback control law for the fast dynamics. As first time, base flexibility was analyzed accurately in this paper for flexible base moving manipulator (FBMM). General dynamic decoupling, whole system stability guarantee and new composed robust control method were proposed. This proposed Sliding Mode Impedance Control Method (SMIC) was simulated for two FBMM models. First model is a simple FBMM composed of a 2 DOFs planar manipulator and a single DOF moving base with flexibility in between. Second FBMM model is a complete advanced 10 DOF FBMM composed of a 4 DOF manipulator and a 6 DOF moving base with flexibility. This controller provides desired position/force control accurately with satisfactory damped vibrations especially at the point of contact. This is the first time that SMIC was addressed for FBMM.

Bluetooth Network for Distributed Autonomous Robotic System

  • Whang, Se-Hee;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2346-2349
    • /
    • 2005
  • Distributed Autonomous Robotic System (DARS) is defined as a system that independent autonomous robots in the restricted environments infer their status from pre-assigned conditions and operate their jobs through the cooperation with each other. In the DARS, a robot contains sensor part to percept the situation around themselves, communication part to exchange information, and actuator part to do a work. Especially, in order to cooperate with other robots, communicating with other robots is one of the essential elements. Because Bluetooth has many advantages such as low power consumption, small size module package, and various standard protocols, Bluetooth is rated as one of the efficient communicating technologies which can apply to small-sized robot system. In this paper, we will develop Bluetooth communicating system for autonomous robots such as DARS robots. For this purpose, The Bluetooth communication system must have several features. The first, this system should be separated from other robot parts and operate spontaneously and independently. In other words, this communication system should have the ability to organize and maintain and reorganize a network scheme. The next, this system had better support any kinds of standard interfaces in order to guarantee flexible applicability to other embedded system. We will discuss how to construct and what kind of procedure to develop the network system.

  • PDF

디지탈 신호 처리기를 사용한 산업용 로봇의 실시간 뉴럴 제어기 설계 (Real Time Neural Controller Design of Industrial Robot Using Digital Signal Processors)

  • 김용태;한성현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.759-763
    • /
    • 1996
  • This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have become increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C31 is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Performance of the neural controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

Robotics in Construction: State-of-Art of On-site Advanced Devices

  • Balzan, Alberto;Aparicio, Claudia Cabrera;Trabucco, Dario
    • 국제초고층학회논문집
    • /
    • 제9권1호
    • /
    • pp.95-104
    • /
    • 2020
  • Recently, robotic technologies have significantly improved, bringing considerable enhancements in many sectors; the main objective of this paper is to figure out if these innovations have also involved the building industry. To achieve this purpose, it has been considered crucial to first reshape and clarify some concepts, incorporating a much more flexible understanding of the term "robot", as well as the formulation of its future potential. Subsequently, it has been carried out an analysis of the various advanced devices that are currently available to be employed in the construction processes; the review includes a thorough classification of construction robots, divided into 18 families reflecting their purpose of use, and a dissection based on the term used to define them. The attention has been focused on the most updated and recent robots and, in their absence, on the most advanced machines prevailing. This operation has been achieved taking into account the development history of construction robots, as well as the analyses and classifications previously conducted, reconsidering them according to the just mentioned reflections. Furthermore, an in-depth exploration of the exoskeletons, as well as on a sophisticated robot recently developed by Schindler Group has been executed.

Design of PM Motor Drive Course and DSP Based Robot Traction System Laboratory

  • Yousfi, Driss;Belkouch, Said;Ouahman, Abdellah Ait;Grenier, Damien;Dehez, Bruno;Richard, Eric
    • Journal of Power Electronics
    • /
    • 제10권6호
    • /
    • pp.647-659
    • /
    • 2010
  • This paper presents a part of North Africa/Europe collaboration results in education to develop project-oriented courses in power electronics and motor drive field. The course aims to teach Permanent Magnet motor drives close to a real world project of significant size and depth so as to be motivational, namely mobile robot project. Particular skills, student will acquire, are those relative to the detailed design and implementation of PM motor controllers in DSP based rapid prototyping environment. Simulation work is completed using graphical modeling tools in Simulink/Plecs, while real-time implementation is achieved by means of eZdspF2812 board and Simulink/TI C2000 Embedded Target tools. This flexible development environment fit the robot traction system very well and provides exactly the functionality necessary for an efficient PM motor drives teaching as demonstrated by a set of simulation and experiments.

다중처리기를 갖는 고성능 범용제어기의 개발과 여유자유도 로봇 제어에의 응용 (Development of high performance universal contrller based on multiprocessor)

  • 박주이;장평훈
    • 한국정밀공학회지
    • /
    • 제10권4호
    • /
    • pp.227-235
    • /
    • 1993
  • In this paper, the development of a high performance flexible controller is described. The hardware of the controller, based on VME-bus, consists of four M68020 single-board computers (32-bit) with M68881 numerical coprocessors, two M68040 single board donputers, I/O devices (such as A/D and D/A converters, paraller I/O, encoder counters), and bus-to-bus adaptor. This software, written in C and based on X-window environment with Unix operating system, includes : text editor, compiler, downloader, and plotter running in a host computer for developing control program ; device drivers, scheduler, and mathemetical routines for the real time control purpose ; message passing, file server, source level debugger virtural terminal, etc. The hardware and software are structured so that the controller might have both flexibility and extensibility. In papallel to the controller, a three degrees of freedom kinematically redundant robot has been developed at the same time. The development of the same time. The development of the robot was undertaken in order to provide, on the one hand, a computationally intensive plant to which to apply the controller, and on the other hand a research tool in the field of kinematically redundant manipulator, which is, as such, an important area. By using the controller, dynamic control of the redundant manipulator was successfully experimented, showing the effectiveness and flexibility of the controller.

  • PDF

A Study on Technique of Navigation with Power-Reflected of the Walker in the Indoor Environment

  • Kim, Min-Sik;Kwon, Hyouk-Gil;Ryu, Je-Goon;Shim, Hyeon-Min;Lee, Eung-Hyuk;Shim, Jea-Hong;Lee, Sang-Moo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.957-962
    • /
    • 2005
  • Today, the elderly is increasing gradually in the Republic of Korea society and this problem will be more serious in the near future. Therefore, engineering support for aged people is required. We are establishing a new field of healthcare engineering for elderly people and aiming to support for aged people and disabled people using adaptive control and instrument technology. In this paper, the goal is to implement the shared control of a robot mobility aid for the elderly. As using this type of assistive technology to be useful by its intended user community, it supports elderly people and handicapped people to live independently in their private homes. The interface transforms the force applied by the user into the robot's motion. Devices like buttons, joysticks, and levers already exist for relaying user input; however, they require hand displacement that would loosen or otherwise release the user's hold. Such interfaces make operation very difficult and potentially unsafe. Therefore, we propose a shared control system. It's safe more than joysticks and buttons. The shared control is a means of registering the user's intention through physical interaction. It's an important component in the development of robotic elderly assistant. The concept of shared control describes a system which is two or more independent control systems. We are using that the three component blocks consist of pressure sensor (flexible force sensor), circuit of measurement and transfer function. Experimental trials of this paper have been tested at the indoor environment. The robot is able to know the user intended direction through haptic device were logged along with the robot's force sensor.

  • PDF

미분기하학 방법을 이용한 비선형 가변구조 제어기 설계 (Design of nonlinear variable structure controller using differential geometric methods)

  • 함철주;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.1227-1233
    • /
    • 1993
  • In this paper we present the differential geometric approach for the analysis and design of sliding modes in nonlinear variable structure feedback systems. We also design the robust controller for the nonlinear system using variable structure control theory on the basis of differential geometric methods and feedback linearization applying Min-Max control based on the Lyapunov second method. The robustness against parameter uncertainties for robot manipulators with flexible joint is considered. Simulation results are presented and show the advantage of the proposed nonlinear control method.

  • PDF