• Title/Summary/Keyword: flexible robot

Search Result 361, Processing Time 0.032 seconds

Type-2 Fuzzy Self-Tuning PID Controller Design and Steering Angle Control for Mobile Robot Turning (이동로봇 선회를 위한 Type-2 Fuzzy Self-Tuning PID 제어기 설계 및 조향각 제어)

  • Park, Sang-Hyuk;Choi, Won-Hyuck;Jie, Min-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.226-231
    • /
    • 2016
  • Researching and developing mobile robot are quite important. Autonomous driving of mobile robot is important in various working environment. For its autonomous driving, mobile robot detects obstacles and avoids them. Purpose of this thesis is to analyze kinematics model of the mobile robot and show the efficiency of type-2 fuzzy self-tuning PID controller used for controling steering angle. Type-2 fuzzy is more flexible in verbal expression than type-1 fuzzy because it has multiple values unlike previous one. To compare these two controllers, this paper conduct a simulation by using MATLAB Simulink. The result shows the capability of type-2 fuzzy self-tuning PID is effective.

Network human-robot interface at service level

  • Nguyen, To Dong;Oh, Sang-Rok;You, Bum-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1938-1943
    • /
    • 2005
  • Network human-robot interface is an important research topic. In home application, users access the robotic system directly via voice, gestures or through the network. Users explore a system by using the services provided by this system and to some extend users are enable to participate in a service as partners. A service may be provided by a robot, a group of robots or robots and other network connected systems (distributed sensors, information systems, etc). All these services are done in the network environment, where uncertainty such as the unstable network connection, the availability of the partners in a service, exists. Moreover, these services are controlled by several users, accessing at different time by different methods. Our research aimed at solving this problem to provide a high available level, flexible coordination system. In this paper, a multi-agent framework is proposed. This framework is validated by using our new concept of slave agents, a responsive multi-agent environment, a virtual directory facilitator (VDF), and a task allocation system using contract net protocol. Our system uses a mixed model between distributed and centralized model. It uses a centralized agent management system (AMS) to control the overall system. However, the partners and users may be distributed agents connected to the center through agent communication or centralized at the AMS container using the slave agents to represent the physical agents. The system is able to determine the task allocation for a group of robot working as a team to provide a service. A number of experiments have been conducted successfully in our lab environment using Issac robot, a PDA for user agent and a wireless network system, operated under our multi agent framework control. The experiments show that this framework works well and provides some advantages to existing systems.

  • PDF

Affordance Perception And Behavior Planning Based on Analytic Hierarchy Process (로봇의 어포던스 지각 과정 및 계층 분석법을 이용한 우선 순위 동작 결정)

  • Lee, Geun-Ho;Kwon, Chul-Min;Ikeda, Akihiro;Chong, Nak-Young
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.3
    • /
    • pp.182-193
    • /
    • 2012
  • This paper presents a new behavior planning scheme for autonomous robots, allowing them to handle various objects used in our daily lives. The key idea underlying the proposed scheme is to use affordance concepts that provide a robot with action possibilities triggered by a relation between the robot and objects around it. Specifically, the robot attempts to find the affordances and to determine the most adequate action among them. Through a series of the perception processes, robot motions can be planned and performed to complete assigned tasks. What is of particular importance from the practical point of view is a decision making capability to determine the best choice by comparing the human's body characteristics and behavioral patterns as criteria with action possibilities as alternatives. For this, the analytic hierarchy process (AHP) technique is employed to systematically evaluate the correlation between the criteria and the alternatives. Moreover, the alternatives arranged in order of priority through the decision making process enable the robot to have redundant solutions for the assigned task, resulting in flexible motion generation. The effectiveness and validity of the proposed scheme are verified by performing extensive simulations using objects of our daily use.

Tracking Control of 3-Wheels Omni-Directional Mobile Robot Using Fuzzy Azimuth Estimator (퍼지 방위각 추정기를 이용한 세 개의 전 방향 바퀴 구조의 이동로봇시스템의 개발)

  • Kim, Sang-Dae;Kim, Seung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3873-3879
    • /
    • 2010
  • Home service robot are not working in the fixed task such as industrial robot, because they are together with human in the same indoor space, but have to do in much more flexible and various environments. Most of them are developed on the base of the wheel-base mobile robot in the same method as a vehicle robot for factory automation. In these days, for holonomic system characteristics, omni-directional wheels are used in the mobile robot. A holonomicrobot, using omni-directional wheels, is capable of driving in any direction. But trajectory control for omni-directional mobile robot is not easy. Especially, azimuth control which sensor uncertainty problem is included is much more difficult. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy azimuth estimator. A trajectory controller for an omni-directional mobile robot, which each motor is controlled by an individual PID law to follow the speed command from inverse kinematics, needs a precise sensing data of its azimuth and exact estimation of reference azimuth value. It has imprecision and uncertainty inherent to perception sensors for azimuth. In this paper, they are solved by using fuzzy logic inference which can be used straightforward to perform the control of the mobile robot by means of the fuzzy behavior-based scheme already existent in literature. Finally, the good performance of the developed mobile robot is confirmed through live tests of path control task.

A Study on High Speed Laser Welding by using Scanner and Industrial Robot (스캐너와 산업용 로봇을 이용한 고속 레이저 용접에 관한 연구)

  • Kang, Hee-Shin;Suh, Jeong;Kim, Jong-Su;Kim, Jeng-O;Cho, Taik-Dong
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.29-29
    • /
    • 2009
  • On this research, laser welding technology for manufacturing automobile body is studied. Laser welding technology is one of the important technologies used in the manufacturing of lighter, safer automotive bodies at a high level of productivity; the leading automotive manufacturers have replaced spot welding with laser welding in the process of car body assembly. Korean auto manufacturers are developing and applying the laser welding technology using a high output power Nd:YAG laser and a 6-axes industrial robot. On the other hand, the robot-based remote laser welding system was equipped with a long focal laser scanner system in robotic end effect. Laser system, robot system, and scanner system are used for realizing the high speed laser welding system. The remote laser welding system and industrial robotic system are used to consist of robot-based remote laser welding system. The robot-based remote laser welding system is flexible and able to improve laser welding speed compared with traditional welding as spot welding and laser welding. The robot-based remote laser systems used in this study were Trumpf's 4kW Nd:YAG laser (HL4006D) and IPG's 1.6kW Fiber laser (YLR-1600), while the robot systems were of ABB's IRB6400R (payload:120kg) and Hyundai Heavy Industry's HX130-02 (payload:130kg). In addition, a study of quality evaluation and monitoring technology for the remote laser welding was conducted. The welding joints of steel plate and steel plate coated with zinc were butt and lapped joints. The quality testing of the laser welding was conducted by observing the shape of the beads on the plate and the cross-section of the welded parts, analyzing the results of mechanical tension test, and monitoring the plasma intensity and temperature by using UV and IR detectors. Over the past years, Trumf's 4kW Nd:YAG laser and ABB's IRB6400R robot system was used. Nowadays, the new laser source, robot and laser scanner system are used to increase the processing speed and to improve the efficiency of processes. This paper proposes the robot-based remote laser welding system as a means of resolving the limited welding speed and accuracy of conventional laser welding systems.

  • PDF

Design of Automatic Warehouse and Inventory control under HMS concept

  • Suesut, Taweepol;Intajag, Sathit;Roengruen, Prapas
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1001-1005
    • /
    • 2004
  • The objective of this paper is to develop the flexible manufacturing system (FMS), which is cooperated with the automatic warehouse and inventory control under holonic manufacturing system (HMS). The HMS is a next wave of manufacturing revolution to deal with dynamic changing. The architecture of HMS is developed for cooperation system between the automatic warehouse agents and the manufacturing agents. This research applies the concept of HMS to develop a distributed control system for automatic warehouse and FMS by industrial network. The parts of prototype manufacturing agents consist of the conveyer system and 3-axises robot that provide the variety patterns in order to work as punch process. Each order of productions depends on the reorder points(RP) of inventory levels. The computation results indicate an improvement by comparing with traditional centralized control.

  • PDF

End-point position control of a flexible arm by PID self-tuning fuzzy controller

  • Yang, G.T.;Ahn, S.D.;Lee, S.C.;Chonan, S.;Inooka, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.496-500
    • /
    • 1993
  • This paper presents an end-point position control of 1-link flexible robot arm by the PID self-tuning fuzzy algorithm. The governing equation is derived by the extended Hamilton's principle and based on the Bernoullie-Euler beam theory. The governing equation is solved by applying the Laplace transform and the numerical inversion method. The arm is mounted on the translational mechanism driven by a ballscrew whose rotation is controlled by dcservomotor. Tip position is controlled by the PID self-tuning fuzzy algorithm so that it follows a desired position. This paper shows the experimental and theoretical results of tip dispalcement, and also shows the good effects reducing the residual vibration of the end-point.

  • PDF

A stochastic model based tracking control scheme for flexible robot manipulators

  • Lee, Kumjung;Nam, kwanghee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.152-155
    • /
    • 1994
  • The presence of joint elasticity or the arm flexibility causes low damped oscillatory position error along a desired trajectory. We utilize a stochastic model for describing the fast dynamics and the approximation error. A second order shaping filter is synthesized such that its spectrum matches that of the fast dynamics. Augmenting the state vector of slow part with that of shaping filter, we obtain a nonlinear dynamics to which a Gaussian white noise is injected. This modeling approach leads us to the design of an extended Kalman filter(KEF) and a linear quadratic Gaussian(LQG) control scheme. We present the simulation results of this control method. The simulation results show us that our Kalman filtering approach is one of prospective methods in controlling the flexible arms.

  • PDF

Study of integrated control system for factory automation (공장자동화를 위한 통합제어시스템에 관한 연구)

  • 최경현;윤지섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1245-1248
    • /
    • 1996
  • This paper describes a cell programming environment that deals with problems associated with programming Flexible Manufacturing Cells(FMCs). The environment consists of the cell programming editor and the automatic generation module. In the cell programming editor, cell programmers can develop cell programs using task level description set which supports task-oriented specifications for manipulation cell activities. This approach to cell programming reduces the amount of details that cell programmers need to consider and allows them to concentrate on the most important aspects of the task at hand. The automatic generation module is used to transform task specifications into executable programs used by cell constituents. This module is based on efficient algorithm and expert systems which can be used for optimal path planning of robot operations and optimal machining parameters of machine tool operations. The development tool in designing the environment is an object-oriented approach which provides a simple to use and intuitive user interface, and allows for an easy development of object models associated with the environment.

  • PDF

Multi-Input Multi-Output Optimal Control of the Vibration of a Flexible Robot Manipulator (유연한 로봇 조작기 진동의 다입출력 최적제어)

  • 김승호;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1587-1600
    • /
    • 1991
  • 본 연구에서는 로봇조작기를 강체부와 유연한 외팔보로 이루어진 모델로 설정 한 후 확장된 Hamilton의 원리를 적용하여 제어계의 운동방정식을 유도하였다. 계를 유한개의 제어 모드와 잔류 모드로 구분하고, 제어 모드에 대해 최적제어를 수행하기 위해 관측기를 설계하였으며, 진동에 관련된 측정 불가능한 상태변수를 추정하였다. 분석과 검토는 서보모터가 모든 제어를 담당하는 방식과 서보모터의 제어 방식에 작동 기를 추가시켜 병행 제어하는 다입출력 방식으로 구별하여 수행하였다.