• Title/Summary/Keyword: flexible packaging film

Search Result 68, Processing Time 0.017 seconds

The Improvement of Electrical Characteristics of Inkjet-printed Cu films with Stress Relaxation during Thermal Treatment (잉크젯 프린팅된 Cu 박막의 응력해소를 통한 전기적 특성 개선)

  • Yi, Seol-Min;Joo, Young-Chang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.57-62
    • /
    • 2014
  • Using flexible bismaleimide-triazine co-polymer as a substrate, inkjet-printed Cu films were also investigated for low-cost and process feasibility of flexible electronics. After annealing at $200^{\circ}C$ for 1 h under various reducing ambient, surface color was changed to red and electrical resistivity was decreased to the level of conductor under formic acid ambient. However, its resistivity was much higher than conventional copper films due to surface crack. In order to reduce the residual film stress after annealing, additional isothermal treatment was inserted before anneal hiring the stress relaxation applied in processes of amorphous materials. As a result, no surface crack was observed and electrical resistivity of $3.4{\mu}{\Omega}cm$ was measured after annealing at $230^{\circ}C$ with stress relaxation while electrical resistivity of $7.4{\mu}{\Omega}cm$ was observed after normal annealing without relaxation. The effect of stress relaxation was also confirmed by observing surface crack after decreasing the relaxation time to 0 min.

A Novel Patterning Method for Silver Nanowire-based Transparent Electrode using UV-Curable Adhesive Tape (광경화 점착 테이프를 이용한 은 나노와이어 기반 투명전극 패터닝 공법)

  • Ju, Yun Hee;Shin, Yoo Bin;Kim, Jong-Woong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.73-76
    • /
    • 2020
  • Silver nanowires (AgNWs) intrinsically possess high conductivity, ductility, and network structure percolated in a low density, which have led to many advanced applications of transparent and flexible electronics. Most of these applications require patterning of AgNWs, for which photolithographic and printing-based techniques have been widely used. However, several drawbacks such as high cost and complexity of the process disturb its practical application with patterning AgNWs. Herein, we propose a novel method for the patterning of AgNWs by employing UV-curable adhesive tape with a structure of liner/adhesive layer/polyolefin (PO) film and UV irradiation to simplify the process. First, the UV-curable adhesive tape was attached to AgNWs/polyurethane (PU), and then selectively exposed to UV irradiation by using a photomask. Subsequently, the UV-curable adhesive tape was peeled off and consequently AgNWs were patterned on PU substrate. This facile method is expected to be applicable to the fabrication of a variety of low-cost, shape-deformable transparent and wearable devices.

Storage of Black Rice using Flexible Packaging Materials (유연성 플라스틱 포장재를 이용한 흑미의 저장)

  • Kim, Jong-Dae;Kim, Kwan;Eun, Jong-Bang
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.158-163
    • /
    • 1999
  • The quality change of black rice during storage at $20^{\circ}C$ was measured to determine a packaging material for black rice storage, using polyethylene film (PE), polypropylene film (PP) and laminated film with PE and PP (PE/PP). Water activity of black rice was 0.642 at initial time and changed little in 8 months during storage at $20^{\circ}C$. Acidity of black rice was 25 mg KOH at initial time and was the lowest, 33.16 mg KOH, within PE/PP of 0.10 mm in thickness in 8 months during storage at $20^{\circ}C$. L, a and b values, hunter color value of black rice were not changed significantly in all packaging materials during 8 month storage. Hardness of the black rice was increased a little, but changed the smallest in PF/PP and the largest in PE with 0.05mm in thickness in 8 months. During storage, hexanal content was increased the smallest in PE/PP and the largest in 0.05 mm PE. Among fatty acid of black rice, linoleic acid was changed the smallest in PE/PP and the largest in 0.05 mm PE. In conclusion, PE/PP was better for the storage of black rice than PE and PP.

  • PDF

Characterization and Enhancement of Package O2 Barrier against Oxidative Deterioration of Powdered Infant Formula

  • Jo, Min Gyeong;An, Duck Soon;Lee, Dong Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.1
    • /
    • pp.13-16
    • /
    • 2018
  • Powdered infant formula is susceptible to oxidation in the presence of oxygen. Even though the product is usually packaged in nitrogen atmosphere, the oxygen ingress through the package layer may occur in case of flexible pouches and affects the oxidation of the product. $O_2$ barrier of the package is thus important variable to protect the product from oxidative deterioration. $O_2$ barrier property was investigated for aluminum-laminated small pillow packs of $3.5{\times}17.5cm$. Storage temperature and combination of primary and secondary packages were evaluated as variables affecting the barrier for conditions of empty pouch flushed with nitrogen. Apparent oxygen transmission rate of the primary package exposed to air was $2.32{\times}10^{-3}mL\;(STP)\;atm^{-1}\;d^{-1}$ at $30^{\circ}C$ and its temperature dependence could be explained by activation energy of $28.5kJ\;mol^{-1}$ in Arrhenius relationship. The additional secondary package of nylon/PE film containing 20 primary packages was ineffective in modulating package $O_2$ transmission and was only marginally helpful when combined with oxygen scavenger. The same was true in suppressing the product oxidation when the primary package was filled with 14 g of the formula.

Design of CO2 Absorber Mix Tuned for Ripening of Packaged Kimchi (포장 김치의 숙성에 맞춘 CO2 흡수제 배합비율 설계)

  • Jung, Soo Yeon;Lee, Dong Sun;An, Duck Soon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.1
    • /
    • pp.35-40
    • /
    • 2021
  • Calcium hydroxide (CH) reacts with CO2 to produce moisture, and sodium carbonate (SC) reacts with CO2 in the presence of moisture. Using these different characteristics of these two reactants, a CH/SC mixture of CO2 absorber tuned for kimchi ripening to produce CO2 in a flexible package was selected. A ratio of CH:SC (1:2) in highly gas permeable microporous spunbonded film (Tyvek) sachet was found to be appropriate for delayed and consistent CO2 absorption useful for kimchi package. Addition of superabsorbent polymer (SAP) as moisture buffer was helpful for boosting the consistency of CO2 absorption. In a package of 0.5 kg kimchi at 10℃, the sachet consisting of 0.794 g of CH + 2.276 g of SC + 0.4 g of SAP suppressed its volume expansion and maintained a suitable range of CO2 partial pressure (PCO2) steadily inside. These optimal conditions may vary depending on the type and salinity of kimchi, storage and distribution temperature, and the material and area of the absorber sachet. This study showed a potential of mixture CO2 absorber to be tuned for CO2 producing packaged kimchi for the purpose of keeping consistent PCO2 at tolerable volume expansion.

Flexible Planar Heater Comprising Ag Thin Film on Polyurethane Substrate (폴리우레탄 유연 기판을 이용한 Ag 박막형 유연 면상발열체 연구)

  • Seongyeol Lee;Dooho Choi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.29-34
    • /
    • 2024
  • The heating element utilizing the Joule heating generated when current flows through a conductor is widely researched and developed for various industrial applications such as moisture removal in automotive windshield, high-speed train windows, and solar panels. Recently, research utilizing heating elements with various nanostructures has been actively conducted to develop flexible heating elements capable of maintaining stable heating even under mechanical deformation conditions. In this study, flexible polyurethane possessing excellent flexibility was selected as the substrate, and silver (Ag) thin films with low electrical resistivity (1.6 μΩ-cm) were fabricated as the heating layer using magnetron sputtering. The 2D heating structure of the Ag thin films demonstrated excellent heating reproducibility, reaching 95% of the target temperature within 20 seconds. Furthermore, excellent heating characteristics were maintained even under mechanically deforming environments, exhibiting outstanding flexibility with less than a 3% increase in electrical resistance observed in repetitive bending tests (10,000 cycles, based on a curvature radius of 5 mm). This demonstrates that polyurethane/Ag planar heating structure bears promising potential as a flexible/wearable heating element for curved-shaped appliances and objects subjected to diverse stresses such as human body parts.

Characteristics of Flexible Transparent Capacitive Pressure Sensor Using Silver Nanowire/PEDOT:PSS Hybrid Film (은나노와이어·전도성고분자 하이브리드 필름을 이용한 유연 투명 정전용량형 압력 센서의 특성)

  • Ahn, Young Seok;Kim, Wonhyo;Oh, Haekwan;Park, Kwangbum;Kim, Kunnyun;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.21-29
    • /
    • 2016
  • In this paper, we developed a flexible transparent capacitive pressure sensor which can recognize X and Y coordinates and the size of force simultaneously by sensing a change in electrical capacitance. The flexible transparent capacitive pressure sensor was composed of 3 layers which were top electrode, pressure sensing layer, and bottom electrode. Silver nanowire(Ag NW)/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) hybrid film was used for top and bottom flexible transparent electrode. The fabricated capacitive pressure sensor had a total size of 5 inch, and was composed of 11 driving line and 19 sensing line channels. The electrical, optical properties of the Ag NW/PEDOT:PSS and capacitive pressure sensor were investigated respectively. The mechanical flexibility was also investigated by bending tests. Ag NW/PEDOT:PSS exhibited the sheet resistance of $44.1{\Omega}/square$, transmittance of 91.1%, and haze of 1.35%. Notably, the Ag NW/PEDOT:PSS hybrid electrode had a constant resistance change within a bending radius of 3 mm. The bending fatigue tests showed that the Ag NW/PEDOT:PSS could withstand 200,000 bending cycles which indicated the superior flexibility and durability of the hybrid electrode. The flexible transparent capacitive pressure sensor showed the transmittance of 84.1%, and haze of 3.56%. When the capacitive pressure sensor was pressed with the multiple 2 mm-diameter tips, it can well detect the force depending on the applied pressure. This indicated that the capacitive pressure sensor is a promising scheme for next generation flexible transparent touch screens which can provide multi-tasking capabilities through simultaneous multi-touch and multi-force sensing.

Resistive Switching Characteristic of Direct-patternable Amorphous TiOx Film by Photochemical Metal-organic Deposition (광화학증착법에 의한 직접패턴 비정질 TiOx 박막의 제조 및 저항변화 특성)

  • Hwang, Yun-Kyeong;Lee, Woo-Young;Lee, Se-Jin;Lee, Hong-Sub
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.25-29
    • /
    • 2020
  • This study demonstrates direct-patternable amorphous TiOx resistive switching (RS) device and the fabrication method using photochemical metal-organic deposition (PMOD). For making photosensitive stock solutions, Ti(IV) 2-ethylhexanoate was used as starting precursor. Photochemical reaction by UV exposure was observed and analyzed by Fourier transform infrared spectroscopy and the reaction was completed within 10 minutes. Uniformly formed 20 nm thick amorphous TiOx film was confirmed by atomic force microscopy. Amorphous TiOx RS device, formed as 6 × 6 ㎛ square on 4 ㎛ width electrode, showed forming-less RS behavior in ±4 V and on/off ratio ≈ 20 at 0.1 V. This result shows PMOD process could be applied for low temperature processed ReRAM device and/or low cost, flexible memory device.

Reliability of Cu Interconnect under Compressive Fatigue Deformation Varying Interfacial Adhesion Treatment (유연소자용 기판과의 접착 특성에 따른 구리 배선의 압축 피로 거동 및 신뢰성)

  • Min Ju Kim;Jeong A Heo;Jun Hyeok Hyun;So-Yeon Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.105-111
    • /
    • 2023
  • Electronic devices have been evolved to be mechanically flexible that can be endured repetitive deformation. This evolution emphasizes the importance of long-term reliability in metal wiring connecting electronic components, especially under bending fatigue in compressed environments. This study investigated methods to enhance adhesion between copper (Cu) and polyimide (PI) substrates, aiming to improve the reliability of copper wiring under such conditions. We applied oxygen plasma treatment and introduced a chromium (Cr) adhesion layer to the polyimide substrate. Our findings revealed that these adhesion enhancement methods significantly affect compression fatigue behavior. Notably, the chromium adhesion layer, while showing weaker fatigue characteristics at 1.5% strain, demonstrated superior performance at 2.0% strain with no delamination, outperforming other methods. These results offer valuable insights for improving the reliability of flexible electronic devices, including reducing crack occurrence and enhancing fatigue resistance in their typical usage environments.

Surface Nano-to-Micro Patterning for Rubber Magnet Composite via Extreme Pressure Imprint Lithography (극압 임프린트 리소그래피를 통한 자성고무 복합재 표면 미세 패터닝 기술)

  • Eun Bin Kang;Yu Na Kim;Woon Ik Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.3
    • /
    • pp.18-23
    • /
    • 2024
  • Nanoimprint lithography (NIL) is widely used to form structures ranging from micro to nanoscale due to its advantage of generating high-resolution patterns at a low process cost. However, most NIL processes require the use of imprint resists and external elements such as ultraviolet light or heat, necessitating additional post-processes like etching or metal deposition to pattern the target material. Furthermore, patterning on flexible and/or non-planar films presents significant challenges. This study introduces an extreme pressure imprint lithography (EPIL) process that can form micro-/nano-scale patterns on the surface of a flexible rubber magnet composite (RMC) film at room temperature without an etching process. The EPIL technique can form ultrafine structures over large areas through the plastic deformation of various materials, including metals, polymers, and ceramics. In this study, we demonstrate the process and outcomes of creating a variety of periodic structures with diverse pattern sizes and shapes on the surface of a flexible RMC composed of strontium ferrite and chlorinated polyethylene. The EPIL process, which allows for the precise patterning on the surface of RMC materials, is expected to find broad applications in the production of advanced electromagnetic device components that require fine control and changes in magnetic orientation.