• Title/Summary/Keyword: flexible graphite

Search Result 24, Processing Time 0.023 seconds

Development of Carbon Composite Bipolar Plates for PEMFC (양성자 교환막 연료전지용 탄소 복합재료 분리판 개발)

  • Lim, Jun Woo
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.222-228
    • /
    • 2019
  • The proton exchange membrane fuel cell (PEMFC) system has many potential uses as an environmentally friendly power source. Carbon fiber composite bipolar plates are highly corrosion resistant and have high specific strength and stiffness in acidic environments, however, the relatively low electrical conductivity is a major issue which reduces the efficiency of PEMFC. In this study, electrically conductive particles (graphite powder and carbon black) are applied to carbon-epoxy composite prepregs to reduce the electrical resistance of the bipolar plates. The electrical resistance and mechanical properties are measured using conventional test methods, and a unit cell performance evaluation of developed carbon composite bipolar plates is performed to compare with the conventional bipolar plate.

Suppressing Effect of Hydrogen Evolution by Oxygen Functional Groups on CNT/ Graphite Felt Electrode for Vanadium Redox Flow Battery (탄소나노튜브/흑연펠트 전극의 산소작용기를 활용한 바나듐 레독스 흐름 전지의 수소발생 억제 효과)

  • Kim, Minseong;Ko, Minseong
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.4
    • /
    • pp.164-170
    • /
    • 2021
  • Vanadium redox flow batteries (VRFB) have emerged as large-scale energy storage systems (ESS) due to their advantages such as low cross-contamination, long life, and flexible design. However, Hydrogen evolution reaction (HER) in the negative half-cell causes a harmful influence on the performance of the VRFB by consuming current. Moreover, HER hinders V2+/V3+ redox reaction between electrode and electrolyte by forming a bubble. To address the HER problem, carbon nanotube/graphite felt electrode (CNT/GF) with oxygen functional groups was synthesized through the hydrothermal method in the H2SO4 + HNO3 (3:1) mixed acid solution. These oxygen functional groups on the CNT/GF succeed in suppressing the HER and improving charge transfer for V2+/V3+ redox reaction. As a result, the oxygen functional group applied electrode exhibited a low overpotential of 0.395 V for V2+/V3+ redox reaction. Hence, this work could offer a new strategy to design and synthesize effective electrodes for HER suppression and improving the energy density of VRFB.

Development of Composite Bipolar Plate for Vanadium Redox Flow Battery (바나듐 레독스 흐름 전지용 복합재료 분리판 개발)

  • Lim, Jun Woo
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.148-154
    • /
    • 2021
  • Carbon/epoxy composite bipolar plate (BP) is a BP that is likely to replace existing graphite bipolar plate of vanadium redox flow cell (VRFB) due to its high mechanical properties and productivity. Multi-functional carbon/epoxy composite BP requires graphite coating or additional surface treatment to reduce interfacial contact resistance (ICR). However, the expanded graphite coating has the disadvantage of having low durability under VRFB operating conditions, and the surface treatments incur additional costs. In this work, an excessive resin absorption method is developed, which uniformly removes the resin rich area on the surface of the BP to expose carbon fibers by applying polyester fabric. This method not only reduces ICR by exposing carbon fibers to BP surfaces, but also forms a unique ditch pattern that can effectively hold carbon felt electrodes in place. The acidic environmental durability, mechanical properties, and gas permeability of the developed carbon/epoxy composite BP are experimentally verified.

Comparative Study on Low-velocity Impact Behavior of Graphite/Epoxy Composite laminate and Steel Plate (탄소/에폭시 복합재 적층판과 강판의 저속충격 거동에 관한 비교 연구)

  • Kong, Chang-Duk;Kim, Yeong-Gwang;Lee, Seung-Hyeon
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.1-6
    • /
    • 2007
  • This study was performed to make a comparison on low-velocity impact behavior between graphite/epoxy composite laminate and steel plate. In order to validate the proposed scheme fur the impact behavior of the plate, the Karas's impact model was used. The impact models for this comparative study are the graphite/epoxy composite plate having $[0/90/45/-45/-45/45/90/0]_{8S}$ laminate sequence and the steel plate with a steel ball impactor. The low-velocity impact behaviors for two types of plates were comparatively investigated and performed by considering different impactor velocities and weights respectively. In this investigation, it was found that the composite laminate has impact energy absorption effect due to more flexible behavior than the steel plate, and also it has better characteristics on impact damage and weight.

Realtime Detection of Damage in Composite Structures by Using PVDE Sensor (압전고분자 센서를 이용한 복합재 구조의 실시간 손상탐지)

  • ;Y. A. Dzenis
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.118-121
    • /
    • 2002
  • Polyvinylidene di-fluoride (PVDF) film sensor appeared to be practically useful for the structural health monitoring of composite materials and structures. PVDF film sensors were either attached to or embedded in the graphite/epoxy composite (CFRP) samples to detect the fatigue damage at the bondline of single-lap joints or the tensile failure of unidirectional laminates. PVDF sensors were sensitive enough to detect and determine the crack front in linear location since composites usually produce very energetic acoustic emission (AE). PVDF sensors are extremely cost-effective, as flexible as other plastic films, in low profile as thin as a few tens of microns, and have relatively wide-band response, all of which characteristics are readily utilized for the structural health monitoring of composite structures. Signals due to fatigue damage showed a characteristics of mode II (shear) type failure whereas those from fiber breakage at DEN notches showed that of mode I (tensile) type fracture.

  • PDF

The characteristics of Surface Transformation Hardening for Rod-shaped SM45C Carbon Steel by CW Nd:YAG Laser (CW Nd:YAG Laser를 이용한 SM45C 환봉의 표면 열처리 특성)

  • Kim Jong-Do;Gang Un-Ju;Lee Chang-Je;Lee Je-Hun;Seo Jeong;Lee Mun-Yong
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.248-250
    • /
    • 2006
  • The study on a surface transformation hardening of a rod-shaped SM45C carbon steel is carried out by using CW Nd:YAG laser. Conventionally, $CO_2$ laser has been usually used as a laser source for a transformation hardening. however, it is needed to an additional absorbent coating like a colloidal graphite owing to a lower absorbtion rate. On the other hand, no cost and post-removal process of coating is required to Nd:YAG laser, due to a higher absorbtion rate relatively. Moreover, there is a merit which is capable of building up the more flexible processing system resulted from a beam delivery through a optical fiber. In this study, we were going to recognize characteristics of a transformation hardening using a optic head with a gaussian beam distribution.

  • PDF

Development of an Integrated Electrode-bipolar Plate Assembly with Reduced Contact Resistance for Vanadium Redox Flow Battery (바나듐 레독스 흐름전지용 접촉저항 감소 일체형 전극-분리판 조립체 개발)

  • Amanpreet Kaur;Jun Woo Lim
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.190-196
    • /
    • 2024
  • The bipolar plate is a crucial element of the vanadium redox flow battery (VRFB) as it serves as both the electrical conduit and the structural support for the cell within the VRFB stack. Although, the graphite material is primarily used for the bipolar plate due to its excellent electrical conductivity, a significant limitation of performance of the VRFB is present due to high interfacial contact resistance (ICR) arises between the electrode and bipolar plate in the cell stack. This study aims to develop an integrated electrode-bipolar plate assembly that will address the limitations of the ICR. The integrated assembly was constructed using a single carbon felt with thermoplastic and thermoset polymers utilizing hot press method. Experimental results verify that the bipolar plate assembly exhibits reduced area specific resistance (ASR) due to the continuous electrical path. Additionally, from the charge/discharge cell test results, the integrated assembly shows improved cell performance. Therefore, the developed integrated electrode-bipolar plate assembly can serve as a substitute for the conventional bipolar plate and electrode assembly.

Nickel Phosphide Electroless Coating on Cellulose Paper for Lithium Battery Anode

  • Kang, Hyeong-Ku;Shin, Heon-Cheol
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.155-164
    • /
    • 2020
  • Here we report our preliminary results about nickel phosphide (Ni-P) electroless coating on the surface of cellulose paper (CP) and its feasibility as the anode for lithium (Li) batteries. In particular, CP can act as a flexible skeleton to maintain the mechanical structure, and the Ni-P film can play the roles of both the anode substrate and the active material in Li batteries. Ni-P films with different P contents were plated uniformly and compactly on the microfiber strands of CP. When they were tested as the anode for Li battery, their theoretical capacity per physical area was comparable to or higher than hypothetical pure graphite and P film electrodes having the same thickness. After the large irreversible capacity loss in the first charge/discharge process, the samples showed relatively reversible charge/discharge characteristics. All samples showed no separation of the plating layer and no detectable micro-cracks after cycling. When the charge cut-off voltage was adjusted, their capacity retention could be improved significantly. The electrochemical result was just about the same before and after mechanical bending with respect to the overall shape of voltage curve and capacity.

Development of GDL-carbon Composite Bipolar Plate Assemblies for PEMFC (PEM 연료전지용 가스확산층-탄소 복합재료 분리판 조합체 개발)

  • Lim, Jun Woo
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.406-411
    • /
    • 2021
  • PEM (proton exchange membrane) fuel cells generate only water as a by-product, and thus are in the spotlight as an eco-friendly energy source. Among the various components composing the stack of the fuel cell, research on the bipolar plate that determines the efficiency of the fuel cell is being actively conducted. The composite bipolar plate has high strength, rigidity and corrosion resistance, but has the disadvantage of having a relatively low electrical conductivity. In this study, to overcome these shortcomings, a gas diffusion layer (GDL)-composite bipolar plate assembly was developed and its performance was experimentally verified. The graphite foil coating method developed in the previous study was applied to reduce the contact resistance between the bipolar plate and the GDL. In addition, in order to improve electron path in the stack and minimize the contact resistance between the GDL and the bipolar plate, a GDL-bipolar plate assembly was fabricated using a thin metal foil. As a result of the experiment, it was confirmed that the developed GDL-bipolar plate assembly had 98% lower electrical resistance compared to the conventional composite bipolar plate.

Homogenized cross-section generation for pebble-bed type high-temperature gas-cooled reactor using NECP-MCX

  • Shuai Qin;Yunzhao Li;Qingming He;Liangzhi Cao;Yongping Wang;Yuxuan Wu;Hongchun Wu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3450-3463
    • /
    • 2023
  • In the two-step analysis of Pebble-Bed type High-Temperature Gas-Cooled Reactor (PB-HTGR), the lattice physics calculation for the generation of homogenized cross-sections is based on the fuel pebble. However, the randomly-dispersed fuel particles in the fuel pebble introduce double heterogeneity and randomness. Compared to the deterministic method, the Monte Carlo method which is flexible in geometry modeling provides a high-fidelity treatment. Therefore, the Monte Carlo code NECP-MCX is extended in this study to perform the lattice physics calculation of the PB-HTGR. Firstly, the capability for the simulation of randomly-dispersed media, using the explicit modeling approach, is developed in NECP-MCX. Secondly, the capability for the generation of the homogenized cross-section is also developed in NECP-MCX. Finally, simplified PB-HTGR problems are calculated by a two-step neutronics analysis tool based on Monte Carlo homogenization. For the pebble beds mixed by fuel pebble and graphite pebble, the bias is less than 100 pcm when compared to the high-fidelity model, and the bias is increased to 269 pcm for pebble bed mixed by depleted fuel pebble. Numerical results show that the Monte Carlo lattice physics calculation for the two-step analysis of PB-HTGR is feasible.