• 제목/요약/키워드: flexible flat display

검색결과 42건 처리시간 0.025초

The Effect of Thickness on Flexible, Electrical and Optical properties of Ti- ZnO films on Flexible Glass by Atomic Layer Deposition

  • 이우재;윤은영;권세훈
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.196.1-196.1
    • /
    • 2016
  • TCO(Transparent Conducting Oxide) on flat glass is used in thin-film photovoltaic cell, flat-panel display. Nowadays, Corning(R) Willow Glass(R), known as flexible substrate, has attracted much attention due to its many advantages such as reliable roll-to-roll glass processing, high-quality flexible electronic devices, high temperature process. Also, it can be an alternative to flexible polymer substrates which have their poor stability and degradation of electrical and optical qualities. For application on willow glass, the flexibility, electrical, optical properties can be greatly influenced by the TCO thin film thickness due to the inherent characterization of thin film in nanoscale. It can be expected that while thick TCO layer causes poor transparency, its sheet resistance become low. Also, rarely reports were focusing on the influence of flexible properties by varying TCO thickness on flexible glass. Therefore, it is very important to optimize TCO thickness on flexible Willow glass. In this study, Ti-ZnO thin films, with different thickness varied from 0 nm to 50 nm, were deposited on the flexible willow glass by atomic layer deposition (ALD). The flexible, electrical and optical properties were investigated, respectively. Also, these properties of Ti-doped ZnO thin films were compared with un-doped ZnO thin film. Based on the results, when Ti-ZnO thin films thickness increased, resistivity decreased and then saturated; transmittance decreased. The Figure of Merit (FoM) and flexibility was the highest when Ti-ZnO thickness was 40nm. The flexible, electrical and optical properties of Ti-ZnO thin films were better than ZnO thin film at the same thickness.

  • PDF

탄소나노튜브 기반 투명전도성 필름 및 이의 응용 (Carbon Nanotube (CNT) based Transparent Conductive Films for Display Applications)

  • 이건웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.77-77
    • /
    • 2007
  • The development of next generation displays such as flexible display is a major challenge. Most materials and processes in current flat panel display industry cannot be transferred to flexible substrates. Typically, indium tin oxide (ITO) thin films are brittle and need to be deposited at high temperature to achieve an optimal opto-electrical property, therefore ITO films cannot be used as a flexible electrode. Up to date, many alternative materials to ITO have been proposed such as conductive polymers, nanometals, solution deposited transparent conductive oxide(TCO) and carbon nanotubes(CNTs). CNT based transparent conductive films are fabricated on glass and polymer substrates. CNT thin films exhibit a sheet resistance ($R_s$) of nearby $10^3\;{\Omega}/sq$ with a transmittance of around 80% on the visible light range, which is attributed by excellent dispersion and interaction among CNTs, solvents and polymeric binders. This talk will present the current studies, opto-electrical properties, design criteria and its applications for CNT-based transparent conductive films.

  • PDF

유연 디스플레이용 무색 투명 폴리이미드 필름의 굽힘 잔류 변형률 평가 (Evaluation of Residual Strains under Pure Bending Loading for Colorless and Optically Transparent Polyimide Film for Flexible Display)

  • 최민성;박민석;박한영;오충석
    • 반도체디스플레이기술학회지
    • /
    • 제20권4호
    • /
    • pp.49-54
    • /
    • 2021
  • The display industry is transitioning from traditional rigid products such as flat panel displays to flexible or wearable ones designed to be folded or rolled. Accordingly, colorless and optically transparent polyimide (CPI) films are one of the prime candidates to substitute traditional cover glass as a passivation layer to accommodate product flexibility. However, CPI films subjected to repetitive pure bending loads inevitably entail an accumulation of residual strain that can eventually cause wrinkles or delamination in the underlying component after a certain number of static and cyclic loading. The purpose of this study is to establish an experimental method to systematically evaluate the bending residual strain of CPI films. Films were monotonically and cyclically wrapped on mandrels of various diameters to ensure a constant strain in each. After unwrapping the wound CPI film, the residual radius of curvature remaining on the film was measured and converted into residual strain. The critical radius of curvature at which residual strain does not remain was about 5 mm, and the residual strain decreased in proportion to the log time. It is expected that flexible displays can be reliably designed using the data between the applied bending strain and the residual strain.

디스플레이 현황과 발전방향 -실감 및 스킨 기기로의 확대 (Display Technologies for Immersive Devices and Electronic Skin)

  • 박영준
    • 전자통신동향분석
    • /
    • 제34권2호
    • /
    • pp.10-18
    • /
    • 2019
  • Since the introduction of CRT(Cathode Ray Tube) in the 1950s, display technologies have been developed continuously. Flat panel displays such as PDP(Plasma Display Panel) and LCD(Liquid Crystal Display) were commercialized in the late 1990s, and OLED(Organic Light Emitting Diodes) and Micro-LED(Micro-Light Emitting Diodes) are now being developed and are becoming widespread. In the future, we expect to develop ultra-realistic, flexible, embedded sensor displays. Ultra-realistic display can be applied to AR/VR(Augmented Reality/Virtual Reality) devices and spatial light modulators for holography. The sensor-embedded display can be applied to robots; electronic skin; and security devices, including iris recognition sensors, fingerprint recognition sensors, and tactile sensors. AR/VR technology must be developed to meet technical requirements such as viewing angle, resolution, and refresh rate. Holography requires optical modulation technology that can significantly improve resolution, viewing angle, and modulation method to enable wide-view and high-quality hologram stereoscopic images. For electronic skin, stable mass production technology, large-area arrays, and system integration technologies should be developed.

수소 분위기에서 유연 기판 위에 증착된 IZO 박막의 구조적 및 전기적 특성 (Structural and electrical characteristics of IZO thin films deposited under hydrogen atmosphere on flexible substrate)

  • 조담비;이규만
    • 반도체디스플레이기술학회지
    • /
    • 제11권1호
    • /
    • pp.29-33
    • /
    • 2012
  • In this study, we have investigated the structural and electrical characteristics of IZO thin films deposited under hydrogen atmosphere on flexible substrate for the OLED (organic light emitting diodes) devices. For this purpose, PES was used for flexible substrate and IZO thin films were deposited by RF magnetron sputtering under hydrogen ambient gases (Ar, $Ar+H^2$) at room temperature. In order to investigate the influences of the hydrogen, the flow rate of hydrogen in argon mixing gas has been changed from 0.1sccm to 0.5sccm. All the samples show amorphous structure regardless of flow rate. The electrical resistivity of IZO films increased with increasing flow rate of $H^2$ under $Ar+H^2$. All the films showed the average transmittance over 85% in the visible range. The OLED device was fabricated with different IZO electrodes made by configuration of IZO/$\acute{a}$-NPD/DPVB/$Alq_3$/LiF/Al to elucidate the performance of IZO substrate. OLED devices with the amorphous-IZO (a-IZO) anode film show good current density-voltage-luminance characteristics. This suggests that flat surface roughness and low electrical resistivity of a-IZO anode film lead to more efficient anode material in OLED devices.

Silicon Nitride Films Prepared at a Low Temperature (${\leq}200^{\circ}C$) for Gate Dielectric of Flexible Display

  • Lee, Kyoung-Min;Hwang, Jae-Dam;Lee, Youn-Jin;Hong, Wan-Shick
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1402-1404
    • /
    • 2009
  • The silicon nitride films for gate dielectric were deposited by catalytic chemical vapor deposition at low temperature (${\leq}200^{\circ}C$). The mixture of $SiH_4$, $NH_3$ and $H_2$ was used as source gases. The current-voltage (I-V) and the capacitance-voltage (C-V) characteristics of the films were measured. The breakdown voltage and the flat band voltage shift of samples were improved by increase of the $NH_3$ contents and $H_2$ dilution ratio. The defect states were analyzed by photoluminescence (PL) spectra. As the defect states decreased, the breakdown voltage and the flat band voltage shift increased.

  • PDF

Poly-Silicon TFT's on Metal Foil Substrates for Flexible Displays

  • Hatalis, Miltiadis;Troccoli, M.;Chuang, T.;Jamshidi, A.;Reed, G.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.I
    • /
    • pp.692-696
    • /
    • 2005
  • In an attempt to fabricate all inclusive display systems we are presenting a study on several elements that would be used as building blocks for all-on-board integrated applications on stainless steel foils. These systems would include in the same substrate all or many of the components needed to drive a flat panel OLED display. We are reporting results on both digital and analog circuits on stainless steel foils. Shift registers running at speeds greater than 1.0MHz are shown as well as oscillators operating at over 40MHz. Pixel circuits for driving organic light emitting diodes are presented. The device technology of choice is that based on poly-silicon TFT technology as it has the potential of producing circuits with good performance and considerable cost savings over the established processes on quartz or glass substrates (amorphous Silicon a-Si:H or silicon on Insulator SOI).

  • PDF

Effects of Resistance Footrest on Spine Posture in Visual Display Terminal Workers

  • Yoo, Won-gyu
    • 한국전문물리치료학회지
    • /
    • 제28권2호
    • /
    • pp.117-122
    • /
    • 2021
  • Background: Flat-back posture refers to a posture in which the pelvis is tilted backward, the lumbar spine is bent, the upper thoracic spine is increasingly bent, and the lower thoracic spine is straight. Given that most of the day is spent sitting, we need to develop exercise programs and devices that are suitable for people who spend less time exercising than sitting. Objects: This study investigated the effects of resistance footrest exercise on spine posture angles in visual display terminal (VDT) workers with flat back. Methods: We measured the upper lumbar angle (ULA) and lower lumbar angle (LLA) using a flexible ruler for the ULA and LLA. Then, after 1 week of resistance footrest exercise designed to strengthen the lumbar spine musculature, we measured these angles again. We measured each angle three times and then compared measurements from before and after exercise. Results: There were no significant differences in the ULA following the strengthening exercise, but significant differences were observed in LLA. Conclusion: The resistance footrest exercise strengthened the muscles affecting the pelvic and lumbar lordotic angles, and increases in the LLA were changed. This suggests that the role of the lower lumbar spine in the lumbar lordotic curve is greater than that of the upper lumbar spine. In addition, considering the contemporary tendency to lead fairly sedentary lives, these results indicate that exercising while seated can be effective.

용액공정을 이용한 열처리된 산화아연 박막의 투명한 박막 트랜지스터 구현을 위한 전사방법 개발 (Development of Transfer Method for Transparent Thin Film Transistor of Heat-treated Zinc Oxide Thin Film by Solution Process)

  • 권순열;정동건;최영찬;이재용;공성호
    • 반도체디스플레이기술학회지
    • /
    • 제17권2호
    • /
    • pp.57-60
    • /
    • 2018
  • Recently, Thin-film transistors (TFTs) are fundamental building blocks for state-of-the-art microelectronics, such as flat-panel displays and system-on-glass. Zinc oxide thin films have the advantage that they can grow at low temperature and can obtain high charge movility. Also the zinc oxide thin film can be used to control the resistance according to the oxygen content, so it is very easy to obtain the desired physical properties. In this paper, we fabricated a zinc oxide thin film on a polished copper substrate through a solution process, then improved the crystallinity through a geat treatment porcess, and studied to transfer it on a flexible substrate after the heat treatment was completed.

유연 기판 위에 증착된 IZO 박막의 구조적 및 전기적 특성 (Structural and electrical characteristics of IZO thin films deposited on flexible substrate)

  • 이봉근;이규만
    • 반도체디스플레이기술학회지
    • /
    • 제10권2호
    • /
    • pp.39-44
    • /
    • 2011
  • In this study, we have investigated the structural and electrical characteristics of IZO thin films deposited on flexible substrate for the OLED (organic light emitting diodes) devices. For this purpose, PES was used for flexible substrate and IZO thin films were deposited by RF magnetron sputtering under oxygen ambient gases (Ar, $Ar+O_2$) at room temperature. In order to investigate the influences of the oxygen, the flow rate of oxygen in argon mixing gas has been changed from 0.1sccm to 0.5sccm. All the samples show amorphous structure regardless of flow rate. The electrical resistivity of IZO films increased with increasing flow rate of $O_2$ under $Ar+O_2$. All the films showed the average transmittance over 85% in the visible range. The OLED device was fabricated with different IZO electrodes made by configuration of IZO/a-NPD/DPVB/$Alq_3$/LiF/Al to elucidate the performance of IZO substrate. OLED devices with the amorphous-IZO (a-IZO) anode film show better current density-voltage-luminance characteristics than that of OLED devices with the commercial crystalline-ITO (c-ITO) anode film. It can be explained that very flat surface roughness and high work function of a-IZO anode film lead to more efficient hole injection by reduction of interface barrier height between anode and organic layers. This suggests that a-IZO film is a promising anode materials substituting conventional c-ITO anode in OLED devices.