• Title/Summary/Keyword: flexible deformation

Search Result 387, Processing Time 0.028 seconds

Multi Point Press Stretch Forming System Applied to Curved Hull Plate of Aluminum Ship (알루미늄 선박의 외판 가공을 위한 인장성형 시스템 연구)

  • Bae, Chul-Nam;Hwang, Se-Yun;Lee, Jang-Hyun;Jeong, Uh-Cheul;Kim, Kwang-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.3
    • /
    • pp.188-197
    • /
    • 2012
  • Recently, aluminum ships are constructed more than ever because of the environmental pollution generated by FRP (Fiber Reinforced Plastic) ships. In particular, FRP ships have been replaced by the Aluminum ships. The forming process of the curved aluminum plate has been performed only by labor works without systematic technique. Therefore, it is difficult to construct the aluminum ship that the design satisfies both required propulsion performance and hull design. Present study introduces a MPSF (Multi Point Stretching Forming) that is a flexible manufacturing technique to form large sheet panels of doubly curvature. The hull pieces are stretch-formed over the MPSD (multi-point stretching die) generated by the punch element matrix. In this study, MPSF is applied to deform the doubly curved surfaces of aluminum ship. The forming system including FEA (finite element analysis) of the processes for stretching the plate were carried out by static implicit analysis is suggested. Residual deformation of the surface is modeled by an elasto-plastic contact phenomena while the forming process is simulated by FEA. Finally, the proposed system is also validated, comparing the deformed shape by MPSF with that of object surfaces.

A Study on the Container Yard of Mega-Float Offshore Structure Type (부유체식 Container Yard에 관한 연구)

  • 박성현;박석주;고재용
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.133-138
    • /
    • 2002
  • Recently, mega-float offshore structure is studied as one of the effective utilization of the ocean space. And mega-float structure are now being considered for various applications such as floating airports, container yard, offshore cities and so on. This mega-float structure is relatively flexible compared with real floating structures like large ships. when we estimate dynamic responses of these structures in waves, the elastic deformation is important, because vertical dimension is small compared with horizontal. The analysis of the dynamic response as it receives regular wave is studied. The finite element method is used in the analysis of structural section of this model. And the analysis is carried out using the boundary element method int eh fluid division. In order to know the characteristics of the dynamic response of the mega-float structures, effects of wavelength, water depth, and wave direction on dynamic response of the floating structure are studied by use of numerical calculation.

  • PDF

A Study on the Optimum Clearance Selection of Fuel Pump Journal Bearing with Elasto-hydrodynamic Lubrication Analysis (탄성유체윤활해석에 의한 연료 펌프 저널베어링 최적간극 선정 연구)

  • An, Sung Chan;Lee, Sang Don;Son, Jung Ho;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.23-30
    • /
    • 2017
  • The electric controlled marine diesel engine has fuel pump generating the high pressurized fuel for fuel injection to combustion chamber via a common rail. Fuel pump consists of a cam-roller system. Journal bearing installed between a roller and a cam-roller pin is subjected to fluctuating heavy and instant loads by cam lift. First, Kinematic analysis is carried out to predict bearing loads during one cycle acting on the journal bearing. Second, flexible multi-body dynamic analysis and transient elasto-hydrodynamic(EHD) lubrication analysis for journal bearing considering elastic deformation of cam-roller pin, roller and bearing are conducted using AVL EXCITE/PU software to predict lubrication performance. The clearance ratio and journal groove shape providing lubrication oil are important parameter in bearing design having good performance and can be changed easier than other design parameters such as diameter, width, oil supply pressure and bearing material grade. Generally, journal bearing performance is represented by the minimum oil film thickness(MOFT) and peak oil film pressure(POFP). As well as the traditional design parameters(MOFT, POFP), in this study, temperature rise of lubrication oil is also evaluated through the side leakage flow of supplied oil. By the evaluating MOFT, POFP and temperature rise, the optimum bearing clearance ratio is decided.

Alignment Patterns and Position Measurement System for Precision Alignment of Roll-to-Roll Printing (롤투롤 인쇄전자공정에서 중첩정밀도 향상을 위한 정렬패턴과 위치 측정시스템)

  • Seo, Youngwon;Yim, Seongjin;Oh, Dongho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1563-1568
    • /
    • 2012
  • Printed electronics is a technology used for forming electronic circuits or devices, and it is used in the manufacture of many products such as RFID tags, solar cells, and flexible display panels with a much lower cost than in the case of semiconductor process technology. Web-guide-type printing such as roll-to-roll printing is a method used to produce printed electronic devices in a large volume. To commercialize such products, highly precise alignment between printed layers is required. In this study, a highly precise alignment system is proposed, and some experimental results are compared with those obtained using a laser surface vibrometer to illustrate the reliability of the proposed system. The robustness of the proposed system to web deformation is also considered experimentally.

Mechanistic Analysis of Pavement Damage and Performance Prediction Based on Finite Element Modeling with Viscoelasticity and Fracture of Mixtures

  • Rahmani, Mohammad;Kim, Yong-Rak;Park, Yong Boo;Jung, Jong Suk
    • Land and Housing Review
    • /
    • v.11 no.2
    • /
    • pp.95-104
    • /
    • 2020
  • This study aims to explore a purely mechanistic pavement analysis approach where viscoelasticity and fracture of asphalt mixtures are considered to accurately predict deformation and damage behavior of flexible pavements. To do so, the viscoelastic and fracture properties of designated pavement materials are obtained through experiments and a fully mechanistic damage analysis is carried out using a finite element method (FEM). While modeling crack development can be done in various ways, this study uses the cohesive zone approach, which is a well-known fracture mechanics approach to efficiently model crack initiation and propagation. Different pavement configurations and traffic loads are considered based on three main functional classes of roads suggested by FHWA i.e., arterial, collector and local. For each road type, three different material combinations for asphalt concrete (AC) and base layers are considered to study damage behavior of pavement. A concept of the approach is presented and a case study where three different material combinations for AC and base layers are considered is exemplified to investigate progressive damage behavior of pavements when mixture properties and layer configurations were altered. Overall, it can be concluded that mechanistic pavement modeling attempted in this study could differentiate the performance of pavement sections due to varying design inputs. The promising results, although limited yet to be considered a fully practical method, infer that a few mixture tests can be integrated with the finite element modeling of the mixture tests and subsequent structural modeling of pavements to better design mixtures and pavements in a purely mechanistic manner.

Poly(1,2-propylene glycol adipate) as an Environmentally Friendly Plasticizer for Poly(vinyl chloride) (폴리염화비닐의 친환경 가소제로서 Poly(1,2-propylene glycol adipate))

  • Zhao, Yan;Liang, Hongyu;Wu, Dandan;Bian, Junjia;Hao, Yanping;Zhang, Guibao;Liu, Sanrong;Zhang, Huiliang;Dong, Lisong
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.247-255
    • /
    • 2015
  • Poly(1,2-propylene glycol adipate) (PPA) was used as an environmentally friendly plasticizer in flexible poly(vinyl chloride) (PVC). Thermal, mechanical, and rheological properties of the PVC/PPA blends were characterized by differential scanning calorimetry, dynamic mechanical analysis, tensile test, scanning electron microscopy and small amplitude oscillatory shear rheometry. The results showed that PPA lowered the glass transition temperature of PVC. The introduction of PPA could decrease tensile strength and Young's modulus of the PVC/PPA blends; however, elongation-at-break was dramatically increased due to the plastic deformation. The plasticization effect of PPA was also manifested by the decrease of dynamic storage modulus and viscosity in the melt state of the blends. The results indicated that PPA had a good plasticizing effect on PVC.

Biomimetics of Nano-pillar (나노섬모의 자연모사 기술)

  • Hur, Shin;Choi, Hong-Soo;Lee, Kyu-Hang;Kim, Wan-Doo
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.98-105
    • /
    • 2009
  • The cochlea of the inner ear has two core components, basilar membrane and hair cells. The basilar membrane disperses incoming sound waves by their frequencies. The hair cells are on the basilar membrane, and they are the sensory receptors generating bioelectric signals. In this paper, a biomimetic technology using ZnO piezoelectric nano-pillar was studied as the part of developing process for artificial cochlea and novel artificial mechanosensory system mimicking human auditory senses. In particular, ZnO piezoelectric nano-pillar was fabricated by both low and high temperature growth methods. ZnO piezoelectric nano-pillars were grown on solid (high temperature growth) and flexible (low temperature growth) substrates. The substrates were patterned prior to ZnO nano-pillar growth so that we can selectively grow ZnO nano-pillar on the substrates. A multi-physical simulation was also conducted to understand the behavior of ZnO nano-pillar. The simulation results show electric potential, von Mises stress, and deformation in the ZnO nano-pillar. Both the experimental and computational works help characterize and optimize ZnO nano-pillar.

A Study on the Container Yard of Mega-Float Offshore Structure Type. (부유체식 Container Yard에 관한 연구)

  • Park, Sung-Hyeon;Park, Sok-Chu;Ko, Jae-Yong
    • Journal of Navigation and Port Research
    • /
    • v.27 no.1
    • /
    • pp.49-54
    • /
    • 2003
  • Recently, mega-float offshore structure is studied as of the effective utilization of the ocean space. And mega-float structure are now being considered for various applications such as floating airports. container yard, offshore cities and so on. This mega-float structure is relatively flexible compared with floating structures like large ship. When we estimate dynamic responses of these structures in waves, the elastic deformation is important, because vertical dimension is small compare with horizontal. the analysis of the dynamic reponses as it receive regular wave is studied. The finite element method is used in the analysis of structural section of this model. And the analysis is carried out using the boundary element method in the fluid division. In oder to know the characteristics of the dynamic response of the mega-float structures, effects of wavelength, water depth, and wave direction on the dynamic response of the floating structure are studied by use of numerical calculation.

Analytical Simulation of the Seismic Response of a High-Rise RC Building Model (고층 철근콘크리트 건축구조모델의 지진응답에 대한 해석적 모사)

  • Lee, Han-Seon;Lee, Jeong-Jae;Jung, Dong-Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.1-10
    • /
    • 2008
  • A series of shaking table tests were conducted on a 1:12 scale model using scaled Taft N21E earthquake records to investigate the seismic performance of a 17-story high-rise reinforced concrete building structure with a high degree of torsional eccentricity and soft-story irregularities in the bottom two stories. The main characteristics of the behaviors were: (1) a sudden change of the predominant vibration mode from the mode of translation and torsion to the torsional mode after the flexible side underwent a substantial inelastic deformation; (2) an abrupt increase in the torsional stiffness during this change of modes; (3) a warping behavior of the wall in the torsional mode; and (4) a unilateral overturning moment in the transverse direction to the table excitations. In this study, efforts were made to simulate the above characteristics using a nonlinear analysis program, Perform3D. The advantages and limitations are presented with the nonlinear models available in this software, as they are related to the correlation between analysis and test results.

An Assumed Strain Beam Element for Spatial Post-Buckling Analysis of Non-symmetric and Shear Flexible Thin-Walled Beams (박벽보의 3차원 후좌굴 해석을 위한 Locking-Free 보요소)

  • Lee, Kyoung-Chan;Kim, Moon-Young;Park, Jung-Il;Chang, Sung-Pil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.719-730
    • /
    • 2007
  • This study presents a thin-walled space frame element based on the classical Timoshenko beam theory. The element is derived according to the assumed strain field in order to resolve the shear-locking phenomenon. The shape function is developed in accordance with the strain field which is assumed to be constant at a 2-noded straight frame element. In this study, the geometrically nonlinear analysis applies the Corotational procedure in order to evaluate unbalanced loads. The bowing effect is also considered faithfully. Two numerical examples are given; monosymmetric curved and nonsymmetric straight cantilever. When these example structures behave lateral-torsional bucking, the critical loads are obtained by this study and ABAQUS shell elements. Also, the post-buckling behavior is examined. The results give good agreement between this study and ABAQUS shell.