• Title/Summary/Keyword: flexible cylinder

Search Result 61, Processing Time 0.026 seconds

Dynamics of Dancer Systems in Converting Machines (컨버팅 머신의 덴서 동특성 해석)

  • Kang Hyun-Kyoo;Seong Chang-Youp;Shin Kee-Hyun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.65-66
    • /
    • 2006
  • Dancer systems are most widely used mechanism for attenuation of tension disturbances. Lately, demands fur high speed converting machines over 500mpm(m/min) are raising but domestic converting industries can not come up with the machines because capacities for a designing of the converting machine are restricted lower than 300mpm. Moreover roll-to-roll is attracted flexible display manufacturer's attention as a effective method for productivity. A constant tension level in the span before the first printing cylinder is the key of high speed quality printing. This paper presents a modeling and simulations of dancer systems on converting machines.

  • PDF

Cross flow response of a cylindrical structure under local shear flow

  • Kim, Yoo-Chul;Rheem, Chang-Kyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.101-107
    • /
    • 2009
  • The VIV (Vortex-Induced Vibration) analysis of a flexible cylindrical structure under locally strong shear flow is presented. The model is made of Teflon and has 9.5m length, 0.0127m diameter, and 0.001m wall thickness. 11 2-dimensional accelerometers are installed along the model. The experiment has been conducted at the ocean engineering basin in the University of Tokyo in which uniform current can be generated. The model is installed at about 30 degree of slope and submerged by almost overall length. Local shear flow is made by superposing uniform current and accelerated flow generated by an impeller. The results of frequency and modal analysis are presented.

Supramolecular Assembly toward Organic Nanostructures

  • Lee, Myong-Soo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.173-173
    • /
    • 2006
  • We have explored a strategy to control the supramolecular nano-structures self-assembled from rigid segments through attachment of flexible chains through microphase separation and anisotropic arrangement. Supramolecular structures formed by self-assembly of rigid building blocks can be precisely controlled from 1-D layered, 3-D bicontinuous cubic to 2-D cylindrical structures by systematic variation of the type and relative length of the respective blocks. Furthermore, depending on the individual molecular architectures, rigid building blocks self-assemble into a wide range of supramolecular structures such as honeycomb, disk, cylinder, helix, tube, barrel stave, and nano-cage.

  • PDF

Interference loads of two cylinders in a side-by-side arrangement

  • Blazik-Borowa, Ewa
    • Wind and Structures
    • /
    • v.9 no.1
    • /
    • pp.75-93
    • /
    • 2006
  • This paper presents a quasi-steady model of vibrations of two cylinders in a side-by-side arrangement. The cylinders have flexible support and equal diameters. The model assumes that both cylinders participate in the process of vibration, each of them having two degrees of freedom. The movement of cylinders is described by a set of four non-linear differential equations. These equations are evaluated on the basis of a numerical simulation and experimental data. Moreover many features of cylinder vibrations are found from numerical results and are described in this paper.

Reduction Gear Stability Estimation due to Torque Variation on the Marine Propulsion System with High-speed Four Stroke Diesel Engine (고속 4행정 디젤엔진을 갖는 선박 추진시스템에서 토크변동에 의한 감속기어 안정성 평가)

  • Kim, InSeob;Yoon, Hyunwoo;Kim, Junseong;Vuong, QuangDao;Lee, Donchool
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.815-821
    • /
    • 2015
  • Maritime safety has been more critical recently due to the occurrence of shipboard accidents involving prime movers. As such, the propulsion shafting design and construction plays a vital role in the safe operation of the vessel other than focusing on being cost-efficient. Smaller vessels propulsion shafting system normally install high speed four-stroke diesel engine with reduction gear for propulsion efficiency. Due to higher cylinder combustion pressures, flexible couplings are employed to reduce the increased vibratory torque. In this paper, an actual vibration measurement and theoretical analysis was carried out on a propulsion shafting with V18.3L engine installed on small car-ferry and revealed higher torsional vibration. Hence, a rubber-block type flexible coupling was installed to attenuate the transmitted vibratory torque. Considering the flexible coupling application factor, reduction gear stability due to torque variation was analyzed in accordance with IACS(International Association of Classification Societies) M56 and the results are presented herein.

Experimental Study on Elastic Response of Circular Cross-section Slender Body to Forced Oscillation, Waves, and Current (복합 외력환경 중 원형 단면 세장체의 탄성응답에 관한 실험적 연구)

  • Park, Ji-won;Lee, Seung-Jae;Jo, Hyo-Jae;Hwang, Jae-Hyuk;Han, Sung-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.91-99
    • /
    • 2016
  • The global demand for oil and natural gas has increased, and resource development is moving to the deep sea. Floating and flexible offshore structures such as semi-submersible, spar, and FPSO structures have been widely used. The major equipment of floating structures is always exposed to waves, currents, and other marine environmental factors, which cause structural damage. Moreover, flexible risers are susceptible to an exciting force due to the motion of the floating body. The inline and transverse responses from the three-dimensional behavior of a floating structure occur because of various forces. Typical risers are made of steel pipe and applied in the oil and gas development field, but flexible materials such as polyethylene are suitable for OTEC risers. Consequently, the optimal design of a flexible offshore plant requires a dynamic behavior analysis of slender bodies made of the different materials commonly used for offshore flexible risers. In this study, a three-dimensional motion measurement device was used to analyze the displacements of riser models induced by external force factors, and forced oscillation of a riser was linked to forced oscillation under a steady flow and regular wave condition.

STATISTICAL ALGORITHMS FOR ENGINE KNOCK DETECTION

  • Stotsky, A.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.259-268
    • /
    • 2007
  • A knock detection circuit that is based on the signal of an accelerometer installed on the engine block of a spark ignition automotive engine has a band-pass filter with a certain frequency as a parameter to be calibrated. A new statistical method for the determination of the frequency which is the most suitable for the knock detection in real-time applications is proposed. The method uses both the cylinder pressure and block vibration signals and is divided into two steps. In both steps, a new recursive trigonometric interpolation method that calculates the frequency contents of the signals is applied. The new trigonometric interpolation method developed in this paper improves the performance of the Discrete Fourier Transformation, allowing a flexible choice of the size of the moving window. In the first step, the frequency contents of the cylinder pressure signal are calculated. The knock is detected in the cylinder of the engine cycle for which at least one value of the maximal amplitudes calculated via the trigonometric interpolation method exceeds a threshold value indicating a considerable amount of oscillations in the pressure signal; this cycle is selected as a knocking cycle. In the second step, the frequency analysis is performed on the block vibration signal for the cycles selected in the previous step. The knock detectability, which is an individual cylinder attribute at a certain frequency, is verified via a statistical hypothesis test for testing the equality of two mean values, i.e. mean values of the amplitudes for knocking and non-knocking cycles. Signal-to-noise ratio is associated in this paper with the value of t-statistic. The frequency with the largest signal-to-noise ratio (the value of t-statistic) is chosen for implementation in the engine knock detection circuit.

Numerical Investigation of Flow-pattern and Flow-induced Noise for Two Staggered Circular Cylinders in Cross-flow by LBM

  • Kim, Jeong-Whan;Oh, Sae-Kyung;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.82-93
    • /
    • 2008
  • The flowfield behind two cylinders and flow-induced noise generated from the cylinders in various arrangement are numerically investigated based on the finite difference lattice Boltzmann model with 21 velocity bits. which is introduced a flexible specific heat ${\gamma}$ to simulate diatomic gases like air. In an isolated cylinder with two type of mesh. some flow parameters such as Strouhal number $S_t$ and acoustic pressure ${\Delta}p$ simulated from the solution are given and quantitatively compared with those provided the previous works. The effects of the center-to-center pitch ratio $L_{cc}/d=2.0$ in staggered circular cylinders as shown in Fig. 1 and angles of incidence ${\alpha}=30^{\circ}(T_{cc}/d=0.5)$, $45^{\circ}(T_{cc}/d =0.707)$ and $60^{\circ}\;(T_{cc}/d=0.866)$, respectively, are studied. Our analysis focuses on the small-scale instabilities of vortex shedding, which occurs in staggered arrangement. With the results of drag $C_d$ and lift $C_l$ coefficients and vorticity contours. the mechanisms of the interference phenomenon and its interaction with the two-dimensional vortical structures are present in the flowfields under $Re\;{\le}\;200$. The results show that we successively capture very small pressure fluctuations, with the same frequency of vortex shedding, much smaller than the whole pressure fluctuation around pairs of circular cylinders. The upstream cylinder behaves like an isolated single cylinder, while the downstream one experiences wake-induced flutter. It is expected that, therefore, the relative position of the downstream cylinder has significant effects on the flow-induce noise, hydrodynamic force and vortex shedding characteristics of the cylinders.

A Study on Dynamic Behaviour of Single Cylinder Reciprocating Compressor by Joint Simulation of Flexible Multi-body Dynamics and Electromagnetic Circuit (유연체 동역학 모델과 전력전자 회로의 연동해석을 통한 단기통 왕복 압축기 거동해석에 관한 연구)

  • Sung, Won-Suk;Hwang, Won-Gul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.28-38
    • /
    • 2012
  • The characteristics of vibration and noise of a compressor used for electric appliances have significant influence on the quality of the products. For improvement on the quality of electric appliances, investigations for understanding the dynamic behaviour of the compressor are essential. Since Virtual Lab for the dynamics model and MAXWELL for the electromagnetics model are separate software programs with no interface, the joint simulation of the models could not be performed. This study suggests a way to develop the compressor model capable of the joint simulation with MATLAB/SIMULINK linking a flexible multi-body dynamics model, a torque model, and an electricity control model. The compressor model is found to be able to perform I/O data transfer among the sub-models and joint simulation. The simulation results of the flexible body and rigid body dynamics models were compared to check availability of the joint simulation system. In addition, the simulated vibration and driving torque of the compressor mechanisms were compared with measurements. Through the simulations, the influence of springs and LDT on the dynamic behaviour of the compressor was examined. This study examines the influence of the dynamic behaviour of the compressor mechanisms through joint simulation of the flexible multi-body dynamics model and electromagnetic circuit allows analysis.

A Study on the Development of the Automatic Performance-Test-Bench for Drag Torque (드래그 토오크의 자동 성능시험기 개발에 관한 연구)

  • Lee, Seong-Ho;Mok, Hak-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.166-174
    • /
    • 2008
  • Recently, the automotive industry has been developing rapidly. With the progress parts of the automobile components need high quality and the reliability. Among them, braking unit is essential device, and acquire the reliability through the performance test of brake. This study was aimed to design the performance-test-bench to measure the drag torque which has effect on caliper in braking unit. In this progressive technology, it is vital importance to use hydraulic and pneumatic, and to combine test bench with instrumentation engineering technology. This system to construct the design of hydraulic and pneumatic circuit, interface technique between sensors and personal computer, data acquisition and display design, and integrated control are very important technology. Moreover, reliable data are obtained through vacuum system and hydraulic and pneumatic system by using of booster and brake master cylinder which are actually applied to automobile. Then, data signal detector sensors for speed, pressure and torque is attached on this system. Therefore, in this study, we designed a performance-test-bench by and we also made an total control system using personal computer which is more progressive and flexible method than existing PLC control.