• Title/Summary/Keyword: flexible body mode

Search Result 57, Processing Time 0.028 seconds

A study on vibration control of the engine body for a large scale diesel engine using the semi-active controlled hydraulic type of top bracing (준능동형 유압식 톱브레이싱을 이용한 선박용 저속 2행정 디젤엔진의 본체 진동제어)

  • Lee, Moon-Seek;Kim, Yang-Gon;Hwang, Sang-Jae;Lee, Don-Chool;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.632-638
    • /
    • 2014
  • Nowadays, as part of an effort to increase the efficiency of propulsion shafting system, the revolution of the main diesel engine in CMCR(Contract Maximum Continuous Rating) is reduced whereas the stiffness of hull structure supporting the main diesel engine is relatively flexible. However, vibration problems related with resonant response of main diesel engine are increasing although top bracing is installed between the main diesel engine and the hull structures to increase natural frequency of engine body above CMCR to avoid resonant phenomenon. In this study, the dynamic characteristic of top bracing is reviewed by analyzing measuring results of general cargo ships which apply the hydraulic type instead of the friction type to control the natural frequency and the vibration of the engine body. Moreover, considering the vibration characteristic of the engine body and the hydraulic type of the top bracing by varying the number of top bracing, authors suggest the more effective way to control the vibration of the engine body despite of lower stiffness of the hull structure than in the past when the hydraulic type of top bracing is used.

A Study on the Characteristics of Modern Fashion Design for Digital Nomadic Culture (디지털 유목민 문화를 위한 현대 패션디자인의 특성 연구)

  • Kim, Jee-Hee
    • Fashion & Textile Research Journal
    • /
    • v.9 no.1
    • /
    • pp.6-14
    • /
    • 2007
  • The purpose of this study was to delve into what type of expression mode of fashion design could suit the life style of digital nomads, as the appearance of nomadic life style was concurrent with people's modified way of thinking and sociocultural changes in today's digital society. It's basically meant to define the roles of fashion design, which was discussed as a way of improving the quality of life as a sort of 'culture,' and to suggest some of the right directions for fashion design in the future. The culture of today's digital era is marked by a pursuit of high mobility and high speed, and by nomadic disposition that is built on flexible thinking. The kind of design that lets people carry nomadic things with them and thereby improve their mobility can satisfy their needs for mobility, and body-friendly design that functions as a device of information in itself can meet their needs for mobility as well. The leading example of the latter is a wearable computer, and wearable scientific technology will be taken to another level, thanks to the advance in digital technology. In the future, that will be more accessible to people in general, and subminiature digital equipment will gain popularity in fashion industry as part of textiles and clothing or as an accessory. And specific kinds of design will be widespread, including variable design, multi-functional design and modular design. The first serves as a tool to protect the human body and to facilitate the adaptability of it to the given circumstances, and the second is characterized by a superb physical and psychological protectability. The third lets wearers bring design to completion at their own option, owing to an increase in the number of open-minded people and the development of interactive media. All these types of design could be called a wearer-friendly, human-oriented design that is specifically appropriate for the digital age. Wearers can actively be involved in design process as productive consumers, which is expected to help increase opener practices in fashion design sector.

A Design Criterion for the Vibration of a Marine Diesel Generator Set (선박용 디젤발전기의 진동 절연을 위한 설계 기준)

  • Lee, D.C.;Brennan, M.J.;Mace, B.R.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.648-655
    • /
    • 2005
  • The resilient mounts of a diesel engine installed onboard a ship should be designed for both static and dynamic loads. If possible, the resonance frequencies of the six rigid body modes of the installation and the flexible modes of the engine support structure should not lie within the engine operation range. In this paper a design criterion is proposed to evaluate an isolation system which involves the summation of dynamic forces transmitted through the resilient mounts and elastic potential energy index stored in the mounts. A case study is also presented in which a diesel engine generator, which had an elastic foundation and was mounted in a 5500 TEU container vessel, was studied both theoretically and experimentally. The theoretical analysis of the test model was performed by using a single mass 6 degree of freedom system. Actual measurements of mechanical vibration of the Engine and its foundation onboard were carried out, which showed the importance of including the flexibility of the engine support structure in the mode

  • PDF

A Design Criterion for the Vibration Isolation of a Marine Diesel Generator Set (선박용 디젤발전기의 진동 절연을 위한 설계 기준)

  • Brennan M.J.;Mace B.R.;Lee, D.C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.329-338
    • /
    • 2006
  • The resilient mounts of a diesel engine installed onboard a ship should be designed for both static and dynamic loads. If possible, the resonance frequencies of the six rigid body modes of the installation and the flexible modes of the engine support structure should not lie within the engine operation range. In this paper a design criterion is proposed to evaluate an isolation system which involves the summation of dynamic forces transmitted through the resilient mounts and elastic potential energy index stored in the mounts. A case study is also presented in which a diesel engine generator, which had an elastic foundation and was mounted in a 5500 TEU container vessel, was studied both theoretically and experimentally. The theoretical analysis of the test model was performed by using a single mass 6 degree of freedom system. Actual measurements of mechanical vibration of the engine and its foundation onboard were carried out, which showed the importance of including the flexibility of the engine support structure in the mode.

Flexible Body Dynamics Analysis of Agricultural Tractor Using 4-Post Road Simulator (4-Post Road Simulator 를 이용한 농용 트랙터의 유연 다물체 동역학 해석)

  • Park, Ji Soo;Lee, Kang Wook;Cho, Chong Youn;Yoon, Ji Won;Shin, Jai Yoon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.83-88
    • /
    • 2015
  • Agricultural tractors are utilized on rough road such as rice paddy field. Therefore, static and dynamic load should be considered when simulating structural analysis with finite element analysis (FEA). But it consumes a lot of time and effort to measure dynamic load because of difficulty and complexity in modeling various field working load conditions and kinematics of machinery. In this paper, to reduce the efforts, 4-post road simulator is developed for agricultural tractor like modeling commercial vehicle. In proving ground test in our facility, I measured acceleration of front/rare axle and strain of body frame to validate input loads. The acceleration is used for defining input loads. And strain is validated with dynamics analysis including mode superposition method. As a result, I was able to calculate 4-post input road profiles, which represent similar proving ground profile with good reliability.

Dynamic analysis of horizontal linear vibrating motor using DAFUL program (DAFUL 프로그램을 이용한 슬림형 핸드폰 수평 선형 진동모터의 동적 해석)

  • Choi, Chang-Hwan;Kim, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5323-5329
    • /
    • 2013
  • Many companies have tried to develop the horizontally vibrating linear motor, for sliming the smart phone. Mathematical modeling and analysis is one of method to simulate the dynamic performance of the horizonatally vibrating linear motor. However, the horizontally vibrating linear motor vibrates in twisting mode because there are two kinds of force acting on the vibrating part. One is are the horizontal force by Lorentz force. The other is the vertical force by attraction force between magnet of vibrating part and bracket and the gravity force of vibrating part. However, those are very difficult to be included in mathematical modeling which generate the simulation errors. In this paper, we perform MFBD (multi flexible body dynamics) simulation using commercial dynamic analysis program "DAFUL". In our new model, the force effects those are neglected in mathematical model, are included. For the verification, the simulation results are compared with the experiment results with manufactured prototype.

Human Gait-Phase Classification to Control a Lower Extremity Exoskeleton Robot (하지근력증강로봇 제어를 위한 착용자의 보행단계구분)

  • Kim, Hee-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.7
    • /
    • pp.479-490
    • /
    • 2014
  • A lower extremity exoskeleton is a robot device that attaches to the lower limbs of the human body to augment or assist with the walking ability of the wearer. In order to improve the wearer's walking ability, the robot senses the wearer's walking locomotion and classifies it into a gait-phase state, after which it drives the appropriate robot motions for each state using its actuators. This paper presents a method by which the robot senses the wearer's locomotion along with a novel classification algorithm which classifies the sensed data as a gait-phase state. The robot determines its control mode using this gait-phase information. If erroneous information is delivered, the robot will fail to improve the walking ability or will bring some discomfort to the wearer. Therefore, it is necessary for the algorithm constantly to classify the correct gait-phase information. However, our device for sensing a human's locomotion has very sensitive characteristics sufficient for it to detect small movements. With only simple logic like a threshold-based classification, it is difficult to deliver the correct information continually. In order to overcome this and provide correct information in a timely manner, a probabilistic gait-phase classification algorithm is proposed. Experimental results demonstrate that the proposed algorithm offers excellent accuracy.