• Title/Summary/Keyword: flexible arm

Search Result 149, Processing Time 0.029 seconds

유연한 로봇암의 강건진동제어

  • 박형욱;박노철;양현석;박영필;김승호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.68-75
    • /
    • 2000
  • The flexibility of a manipulator inevitably yields vibration at the end effector. In this work, position and vibration control for a flexible robot arm was studied using a separate voice coil type actuator to raise the accuracy and speed of end tip. A flexible robot arm with a tip mass is modeled as an Euler-Bernoulli beam. An $H_$\infty$$ controller is adapted to get a robust control against unmodeled higher-order mode vibration, output sensor noise, and etc. Simulations and experiments show that the modeling of the system is acceptable and robust vibration control is also achieved.

  • PDF

Manual control of a flexible arm and application to automatic control systems

  • Sasaki, Minoru;Inooka, Hikaru;Ishikura, Tadashi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.905-908
    • /
    • 1987
  • A human operator has the ability to control a complicated system such as a gantry crane, an aircraft and a remote manipulator after enough training and learning. In this article, we attempt the positioning experiment of a flexible arm by a human operator. Flexible arm has nonlinearlity and infinite-degrees of freedom in general; thus it is difficult to obtain a control input. The operator interprets a given task and finds the procedure of operations. He devises an effective way of achieving the goal on the basis of his experience and knowledge about the task.

  • PDF

GA-fuzzy $P^2ID$ Control System for Flexible-joint Robot Arm

  • Tangcharoensuk, Teranun;Purahong, Boonchana;Sooraksa, Pitikhate
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.969-972
    • /
    • 2005
  • This paper presents a GA-fuzzy $P^2ID$ control system for the flexible-joint robot arm. This controller is designed based on the parameter adjustment using fuzzy logic and genetic algorithms. According to the simulations, the better performance has been achieved acquired that the robot moved smoothly and met its required objectives. The results of comparison between 8 parameters and 10 parameters can be conclusion that the 10 parameters have setting time little than 8 parameters. In usability can be use 8 or 10 parameters these one.

  • PDF

POSITION CONTROL OF A FLEXIBLE ROBOT ARM UNDER IMPULSIVE LOADING THE TIP

  • Chonan, Seiji;Yuki, Yasuhiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.896-901
    • /
    • 1990
  • A simulation analysis is presented for the position control of a single-link flexible manipulator whose end-effector is subjected to an impulsive force. Arm is rotated by a d.c. servomotor at the shoulder so that the end point stays precisely at its initial position even if the end effector is thumped with the impulsive loading. A gap sensor is used to measure the tip displacement. The control torque based on the PD control law is applied to the motor through the driver circuit. The control strategy is tested by means of computer simulation for the one-link flexible-arm prototype in the authers' laboratory at Tohoku Univ.

  • PDF

A Realization Method of Fault-tolerant Control of Flexible Arm under Sensor Fault by Using an Adaptive Sensor Signal Observer

  • Izumikawa Yu;Yubai Kazuhiro;Hirai Junji
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.8-17
    • /
    • 2006
  • In this paper, we propose a fault-tolerant control system for the position control and vibration suppression of a flexible arm robot. The proposed control system has a strain gauge sensor signal observer based on a reaction force observer and detects a fault by monitoring an estimated error. In order to improve the estimation accuracy, the plant parameters included in the sensor signal observer are updated by using the strain gauge sensor signal in normal time through the adaptive law. After fault detection, the proposed control system exchanges the faulty sensor signal for the estimated one and switches to a fault mode controller so as to maintain the stability and the control performance. We confirmed the effectiveness of the proposed control system through several experiments.

A Study on Position control of a Flexible One-Link Robot Arm (유연한 단일축 로보트 팔의 위치제어)

  • 송봉기;최종호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.2
    • /
    • pp.200-206
    • /
    • 1991
  • In this paper, an output feedback is used to reduce the effect of the vibration in the control of a flexible one-link robot arm. A PD control method with a time varying gain is proposed to improve the performance of the system in tip deflection and settling time for the step reference input. By making the change of feedback gain smoothly, th input torque can be made smooth. When there is a payload with unknown mass, an interpolation method which uses the inrehgrated value of the transient response of the hub angle is proposed for the estimation of teh payload mass. This method can be used when the reference input is known and we can get highly accurate estimate for the unknown payload. It is also demonstrated that flexible one-link arm can be controlled prettry accurately by an output feedback in a noisy environment without knowing the mass of the payload.

  • PDF

A Study on Flexible Control of Dual Arm-Mobile Robot for Smart Factory (스마트펙토리를 위한 듀얼암을 갖는 모바일 로봇의 유연제어에 관한 연구)

  • Lee, Woo-Song;Ha, Eun-Tha;Jeong, Yang-Keun;Park, In-Man
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.2
    • /
    • pp.69-74
    • /
    • 2016
  • This study proposes a new approach to design of the robust control application of a mobile manipulator with dual-arm. The mobil manipulator robot system consists of 12 DOF manipulators and a mobile robot. Kinematics of the robotics has been analyzed and simulated to verify reliability. A position-based torque control technique is applied to the robot by adding an outer loop to interact with the environment. Experimental studies of torque control applications of robot arm and interaction with a user operator are conducted. Experimental results has been proved that the robot arm performed regulated to follow the desired reference.

Robust Controller Design for Flexible Robot Arm Manipulator (유연한 로봇팔의 선단 위치 제어를 위한 강인한 제어기의 설계)

  • 신봉철;이형기;최연욱;안영주
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.2
    • /
    • pp.76-82
    • /
    • 2002
  • The objective of this paper is to design a robust controller for a flexible robot arm manipulator using LMI(Linear Matrix Inequality) theory, and confirm its effectiveness through experimentation. We first describe a modeling Process of the flexible arm in order to get a mathematical model, and then discuss how to approximately obtain the uncertainty of the model for robust control. As to the control system design, we adopt the LMI-based H$_{\infty}$ synthesis algorithm which has the merits of eliminating the regularity restrictions attached to the Riccati-based methods. As a result of this, we can cope with the parameter variation (that is, modeling uncertainty) due to the tip-load variation. Finally we confirm the effectiveness of the controller through experiment and simulation.

  • PDF

Position and Vibration Control of Flexible 2-Link Robot Arm Using Piezoelectric Actuators and Sensors (압전 작동기 및 감지기를 이용한 유연한 2링크 로봇팔의 위치 및 진동제어)

  • Sin, Ho-Cheol;Choe, Seung-Bok;Kim, Seung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.206-212
    • /
    • 2000
  • This paper presents a hybrid actuator scheme to actively control the end-point position and vibration of a two-link flexible robot arm. Control scheme consists of four different actuators; two servo-motors at the hubs and two piezoceramics bonded to the surfaces of the flexible links. Two sliding hyperplanes are designed for two servo-motors which have time varying parameters to maintain control performance in any configuration. The surface gradients of the hyperplanes are determined by pole assignment technique to guarantee the stability on the hyperplanes themselves. During the motion, undesirable oscillations caused by the torques based on the rigid link dynamics are actively suppressed by applying feedback control voltages to the piezoceramic actuators. Consequently, desired tip motion is achieved. In order to demonstrate the effectiveness of the proposed methodology, experiments are performed for the regulating and tracking control problems.

  • PDF

Translational control of a one link flexible arm

  • Lee, Seong-Cheol;Seiji Chonan;Hikaru Inooka
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.577-582
    • /
    • 1989
  • This is a study of the translational end-point control of a single link flexible arm-with a tip mass. The beam is mounted on a translational mechanism driven by the ball screw, whose rotation is controlled by DC servomotor. The problem of shifting the end-point from its initial position to the commanded position is studied analytically both for the open-loop control subjected to some path functions and for the closed-loop control using the feedback of the tip information.

  • PDF