• Title/Summary/Keyword: flexible and high-rise buildings

Search Result 28, Processing Time 0.027 seconds

Wind Tunnel Test Study on the Characteristics of Wind-Induced Responses of Tall Buildings with Openings (중공부(中空部)를 가진 고층건축물(高層建築物)의 풍응답(風應答) 특성(特性)에 관한 풍동실험(風洞實驗) 연구(硏究))

  • Kim, Dong Woo;Kil, Yong Sik;Ha, Young Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.499-509
    • /
    • 2005
  • The excessive wind-induced motion of tall buildings most frequently result from vortex-shedding-induced across-wind oscillations. This form of excitation is most pronounced for relatively flexible, lightweight, and lightly damped high-rise buildings with constant cross-sections. This paper discusses the aerodynamic means ofmitigating the across-wind vortex shedding induced in such situations. Openings are added in both the drag and lift directions in the buildings to provide pressure equalization. Theytend to reduce the effectiveness of across-wind forces by reducing their magnitudes and disrupting their spatial correlation. The effects of buildings with several geometries of openings on aerodynamic excitations and displacement responses have been studied for high-rise buildings with square cross-sections and an aspect ratio of 8:1 in a wind tunnel. High-frequency force balance testshave been carried out at the Kumoh National University of Technology using rigid models with 24 kinds of opening shapes. The measured model's aerodynamic excitations and displacement were compared withthose of a square cylinder with no openings to estimate the effectiveness of openings for wind-induced oscillations. From these results, theopening shape, size, and location of buildings to reduce wind-induced vortex shedding and responses were pointed out.

Form Follows Function - The Composite Construction and Mixed Structures in Modern Tall Buildings

  • Peng, Liu
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.191-198
    • /
    • 2014
  • The tall building and super tall building has been a common building type in China, with multiple functions and complex geometry. Composite construction is broadly used in tall building structures and constitutes the mixed structure together with concrete and steel constructions. The mixture of the constructions is purposely designed for specific area based on the analysis results to achieve the best cost-effectiveness. New types of composite construction are conceived of by engineers for columns and walls. Material distribution is more flexible and innovative in the structural level and member level. However the reliability of computer model analysis should be verified carefully. Further researches in the design and build of composite construction are necessary to ensure the success of its application. Composite or Mixture Index is suggested to be used as a performance benchmark.

Analysis of vortex induced vibration frequency of super tall building based on wind tunnel tests of MDOF aero-elastic model

  • Wang, Lei;Liang, Shuguo;Song, Jie;Wang, Shuliang
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.523-536
    • /
    • 2015
  • To study the vibration frequency of super high-rise buildings in the process of vortex induced vibration (VIV), wind tunnel tests of multi-degree-of-freedom (MDOF) aero-elastic models were carried out to measure the vibration frequency of the system directly. The effects of structural damping, wind field category, mass density, reduced wind velocity ($V_r$), as well as VIV displacement on the VIV frequency were investigated systematically. It was found that the frequency drift phenomenon cannot be ignored when the building is very high and flexible. When $V_r$ is less than 8, the drift magnitude of the frequency is typically positive. When $V_r$ is close to the critical wind velocity of resonance, the frequency drift magnitude becomes negative and reaches a minimum at the critical wind velocity. When $V_r$ is larger than12, the frequency drift magnitude almost maintains a stable value that is slightly smaller than the fundamental frequency of the aero-elastic model. Furthermore, the vibration frequency does not lock in the vortex shedding frequency completely, and it can even be significantly modified by the vortex shedding frequency when the reduced wind velocity is close to 10.5.

Case Study of 4D CAD Modeling in Hi-Rise Complex Buildings Project (초고층 복합시설물의 4D CAD 모델링 사례연구)

  • Kwan Oh-Sung;Park Woo-Yul;Cho Hun-Hee;Kang Kyung-In
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.187-192
    • /
    • 2001
  • High-Rise Building Construction Project which has high uncertainty and complexity, causes lots of problems under construction. In particular, the integration between design phase and construction phase highly affects a construction project in terms of cost and time. To possibly make the flexible response and preliminary verification against the construction planning problems in high rise building project, this paper proposes the Engineering-Construction Management System based on 4D CAD that put the time factor together with 3D CAD. The usefulness of this system has been verified through the actual project. It could helps the reducing trials and errors during construction phase by catching the factors on problems of project. Ultimately it will allow users to save project cost and duration by field application.

  • PDF

A Preliminary Strategic Study of Resilient Plot Utilization in Rail Transit Stations in the Realm of the City Center, Guided by the Density of Three-Dimensional-Path Public Space

  • Yuan Zhu;Zixin Luo
    • International Journal of High-Rise Buildings
    • /
    • v.13 no.1
    • /
    • pp.57-67
    • /
    • 2024
  • With the requirement of high quality and three-dimensional urban development, the public space areas city-center rail transit stations is expanded from the plots defined by the road network density to the plots defined by the three-dimensional public space density, covering the internal and external paths of the plots, which brings about the resilient pattern of plot utilization. This paper uses the isochronous three-dimensional influence realm model around the station areas to quantitatively analyze and compare the surrounding three-dimensional path density of public space, and initially proposes flexible use patterns of differently scaled plots under the multi-scale plots linkage, to effectively promote the overall accessibility of the station realm space.

Flexible camera series network for deformation measurement of large scale structures

  • Yu, Qifeng;Guan, Banglei;Shang, Yang;Liu, Xiaolin;Li, Zhang
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.587-595
    • /
    • 2019
  • Deformation measurement of large scale structures, such as the ground beds of high-rise buildings, tunnels, bridge, and railways, are important for insuring service quality and safety. The pose-relay videometrics method and displacement-relay videometrics method have already presented to measure the pose of non-intervisible objects and vertical subsidence of unstable areas, respectively. Both methods combine the cameras and cooperative markers to form the camera series networks. Based on these two networks, we propose two novel videometrics methods with closed-loop camera series network for deformation measurement of large scale structures. The closed-loop camera series network offers "closed-loop constraints" for the camera series network: the deformation of the reference points observed by different measurement stations is identical. The closed-loop constraints improve the measurement accuracy using camera series network. Furthermore, multiple closed-loops and the flexible combination of camera series network are introduced to facilitate more complex deformation measurement tasks. Simulated results show that the closed-loop constraints can enhance the measurement accuracy of camera series network effectively.

A Study on the Development of Neural Network Predictive PID Controller for the Vibration Control of Building (빌딩의 진동제어를 위한 신경회로망 예측 PID 제어기 개발에 관한 연구)

  • 조현철;이진우;이권순
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.71-74
    • /
    • 1998
  • In recent years, advances in construction techniques and materials have given rese to flexible light-weight structures like high-rise buildings and long-span bridges. Because these structures extremely susceptible to environmental loads, such as earthquakes and strong winds, these random loadings usually produce large deflection and acceleration on these structures. Vibration control system of structures are becoming an integral part of the structural system of the next generation of tall building. The proposed control system is applied to single degree of structure with mass damping and compared with conventional PID and neural network PID control system.

  • PDF

A Study of the Structural Vibration Control Using a Biaxial Tuned Mass Damper (2축 동조 질량 감쇠기를 이용한 구조물의 진동 제어 연구)

  • 정태영
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.473-481
    • /
    • 2000
  • Civil structures are becoming more flexible and lightly damped. When subjected to dynamic loads such as wind, earthquake and wave, vibration may be easily induced and lasted for lond duration. To suppress the wind-induced and earthquake-induced vibration of high-rise buildings, study on the development of a tuned mass damper has been carried out. Based on optimal design on passive tuned mass damper which is considered for a building subject to random excitations, a biaxial tuned mass damper was designed and developed. It is confirmed that the vibration levels of the test structure are reduced using the developed tuned mass damper.

  • PDF

A Study on Base Isolation Performance of MR Dampers Using Clipped-Optimal Control (Clipped-Optimal Control을 사용한 MR 감쇠기의 면진성능에 관한 연구)

  • 고봉준;이종세
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.529-536
    • /
    • 2003
  • As large structures such as high-rise buildings and cable-stayed bridges become lighter and more flexible, the necessity of structural control for reducing excessive displacement and acceleration due to seismic excitation is increased. As a method to minimize seismic damages, various base isolation systems are adopted or considered for adoption. In this study, the seismic performance of MR dampers are studied and compared with that of the NZ system as a base isolation system. As the control algorithm of the MR damper, the clipped-optimal control(applied LQR method) is employed. A five-story building is modeled and the seismic performance of the two systems subjected to three different earthquakes is compared. The results show that the MR damper system can provide superior protection than the NZ system for a wide range of ground motions.

  • PDF

Shaking Table Tests of 1/12-Scale RC Bearing-Wall System with Bottom Piloti Stories Having Eccentric Shear-Wall (편심을 가진 1/12 축소 RC 주상복합구조물의 진동대실험)

  • 이한선;고동우;권기혁;김병현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.185-190
    • /
    • 2001
  • The severe shortage of the available sites in the highly developed downtown area in Korea necessitates the construction of high-rise buildings which meet the need of residence and commercial activity simultaneously. The objective of this study is to investigate the seismic performance of this type of building structures. For this purpose, two 1:12 scale 17-story reinforced concrete model structures were constructed according to the similitude law, in which the upper 15 stories have a bearing-wall system while the lower 2-story frames with infilled shear wall have two different layouts of the plan : The one has symmetric plan and the other has unsymmetric plan. Then, this model was subjected to a series of earthquake excitations. The test results show that the layout of shear wall has the negligible effect on the natural period and the base shear coefficient, but great effect on the failure mode of beam-column joint at flexible side frame.

  • PDF