• Title/Summary/Keyword: flexibility method

Search Result 1,512, Processing Time 0.034 seconds

Damage detection in truss bridges using vibration based multi-criteria approach

  • Shih, H.W.;Thambiratnam, D.P.;Chan, T.H.T.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.2
    • /
    • pp.187-206
    • /
    • 2011
  • This paper uses dynamic computer simulation techniques to develop and apply a multi-criteria procedure using non-destructive vibration-based parameters for damage assessment in truss bridges. In addition to changes in natural frequencies, this procedure incorporates two parameters, namely the modal flexibility and the modal strain energy. Using the numerically simulated modal data obtained through finite element analysis of the healthy and damaged bridge models, algorithms based on modal flexibility and modal strain energy changes before and after damage are obtained and used as the indices for the assessment of structural health state. The application of the two proposed parameters to truss-type structures is limited in the literature. The proposed multi-criteria based damage assessment procedure is therefore developed and applied to truss bridges. The application of the approach is demonstrated through numerical simulation studies of a single-span simply supported truss bridge with eight damage scenarios corresponding to different types of deck and truss damage. Results show that the proposed multi-criteria method is effective in damage assessment in this type of bridge superstructure.

Control Method for the number of check-point nodes in detection scheme for selective forwarding attacks (선택적 전달 공격 탐지 기법에서의 감시 노드 수 제어기법)

  • Lee, Sang-Jin;Cho, Tae-Ho
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.387-390
    • /
    • 2009
  • Wireless Sensor Network (WSN) can easily compromised from attackers because it has the limited resource and deployed in exposed environments. When the sensitive packets are occurred such as enemy's movement or fire alarm, attackers can selectively drop them using a compromised node. It brings the isolation between the basestation and the sensor fields. To detect selective forwarding attack, Xiao, Yu and Gao proposed checkpoint-based multi-hop acknowledgement scheme (CHEMAS). The check-point nodes are used to detect the area which generating selective forwarding attacks. However, CHEMAS has static probability of selecting check-point nodes. It cannot achieve the flexibility to coordinate between the detection ability and the energy consumption. In this paper, we propose the control method for the number fo check-point nodes. Through the control method, we can achieve the flexibility which can provide the sufficient detection ability while conserving the energy consumption.

  • PDF

Vibration Analysis of Hard Disk Drive System (하드 디스크 드라이브 계의 진동해석)

  • Im, Seung-Cheol;Gwak, Byeong-Mun;Jeon, Sang-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1183-1192
    • /
    • 2000
  • This paper relates to the flexural vibration analysis of the hard disk drive (HDD) spindle systems by means of the finite element method. In contrast to previous researches, every system componebt is here analytically modeled taking into account its flexibility and also the centrifugal effect particularly for the disk. To prove the effectiveness and accuracy of the proposed method, commercial HDD spindle systems with two and three identical disks are chosen as examples. Then, their major flexural natural modes are computed employing only a small number of element meshes as the shaft rotaional speed is varied, and compared with the bumerical or experimental results.

Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Supported by a Flexible Base Plate in a HDD (유연한 베이스 플레이트로 지지되는 회전 유연 HDD 디스크-스핀들계의 유한 요소 진동 해석)

  • 한재혁;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.571-577
    • /
    • 2003
  • This research proposes a finite element method to determine the natural vibration characteristics of the spinning disk-spindle system in a HDD including the flexibility of supporting structure. Finite element equations of each substructure are derived with the introduction of consistent variables to satisfy the geometric compatibility at the internal boundaries. The natural frequencies and modes from the global asymmetric matrix equations of motion are determined by using the implicit restarted Arnoldi iteration method. The validity of the proposed method is verified by the experimental modal testing. It also shows that the flexibility of base plate plays an important role to determine the natural frequencies of the spinning disk-spindle system in a HDD.

  • PDF

Using Real Options to value the flexibility of Engineering Management decisions in Infrastructure Projects

  • Koo, Bonsang
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.1
    • /
    • pp.10-13
    • /
    • 2013
  • Determining on a particular construction method is typically decided in the initial phases of a project. However, changing conditions during actual construction may require a different method or technology to be employed. Providing an option for project managers to change construction provides flexibility that can increase value to the overall project. This research provides the ability to modify construction methods as a real option, which allows its value to be modeled. The research also formalizes a way to integrate a binomial lattice model with the Earned Value Method's S-curve. The integrated model provides a decision support tool that planners can use to determine whether to exercise the option depending on the status metrics provided by EVM.

Finite Element Modeling of Contact Joints by Flexibility Influence Coefficient (유연도 영향계수법을 이용한 접촉 결합부의 모델링)

  • 오제택;조성욱;이규봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.814-819
    • /
    • 2003
  • Machine tool design concepts have evolved towards high efficiency, accurate precision. high structural integrity, and multi-functional systems. Like many other structures, machine tools are also composed of many parts. When these parts are assembled, many kinds of joints are used. In the finite element analysis of these assembled structures, most joints are commonly considered as rigid joints. But, to get the more accurate solution, we need to model these joints in a appropriate manner. In this study, rational dynamic modeling and analysis method for complex structures are studied with special attention to slide way joints. For modeling of slide way joints, a general modeling technique is used by influence coefficients method which is applied to the conversion of detailed finite element model to the equivalent reduced joint model. The theoretical part of this method is illustrated and the method is applied to the structure with slide way joint. In this method. the non-linearity of the contact surfaces is considered within a proper range and the boundary effect of the joint model can be eliminated. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam and slide way joints of the vertical type lathe. The method can also be used to other kinds of joint modeling. The results of these analysis were compared with those of Yoshimura models and rigid joint models. which demonstrated the practical applicability of the proposed method.

  • PDF

A Study on Miniaturization and Design Flexibility of an Elliptic-Response Open-Loop Resonator Filter (타원응답 개방 루프 공진기 필터의 소형화 및 설계 유연성에 관한 연구)

  • 안창수;김영식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.11
    • /
    • pp.1082-1089
    • /
    • 2004
  • In this paper, miniaturization of an elliptic-response open-loop resonator filter and design flexibility using similarity transformation of the coupling matrix are proposed. Moreover, the filter with wider fractional bandwidth is designed by the proposed method. In order to verify the proposed method, three 4th-order elliptic-response open-loop resonator filters with a relative bandwidth of 4 % at the center frequency of 2.0 GHz are designed. One is realized with constant-width microstrip line resonator and the others are implemented with different-width microstrip line resonator. Compared with the former one, the latter have shown the size reduction of 13 % and 25 %, respectively. Since it may not be possible to implement the resonators with very narrow spacing for the required coupling coefficient filters with two different configurations representing same response characteristic through similarity transformation of the coupling matrix are proposed. From this design flexibility, a filter with a relative bandwidth of 8 % at the center frequency of 2.0 GHz is designed with realizable design parameters.

Effects of Torsional Flexibility on a Flapping Airfoil (플랩핑 에어포일에 대한 비틀림 유연성의 영향)

  • Cho, Moon-Sung;Bae, Jae-Sung;Kim, Hark-Bong;Kim, Woo-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1146-1151
    • /
    • 2008
  • In this paper, the effects of torsional flexibility on a flapping airfoil are investigated. The aerodynamic forces of a torsional flexible flapping airfoil is computed using 2-D unsteady vortex panel method. A typical-section aeroelastic model is used for the aeroelsatic calculation of the flapping airfoil. Torsional flexibility and excitation frequency are considered as main effective parameters. Under heavy airfoil condition , the thrust peak is observed at the points where the frequency ratio is about 0.75. Based on this peak criterion, there exists two different motions. One is an inertia driven deformation motion and the other is an oscillation driven deformation motion. Also, in the thrust peak condition, the phase angle is kept 85 degrees, independent of the torsional flexibility and the excitation frequency.

Damage detection in beam-like structures using deflections obtained by modal flexibility matrices

  • Koo, Ki-Young;Lee, Jong-Jae;Yun, Chung-Bang;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.605-628
    • /
    • 2008
  • In bridge structures, damage may induce an additional deflection which may naturally contain essential information about the damage. However, inverse mapping from the damage-induced deflection to the actual damage location and severity is generally complex, particularly for statically indeterminate systems. In this paper, a new load concept, called the positive-bending-inspection-load (PBIL) is proposed to construct a simple inverse mapping from the damage-induced deflection to the actual damage location. A PBIL for an inspection region is defined as a load or a system of loads which guarantees the bending moment to be positive in the inspection region. From the theoretical investigations, it was proven that the damage-induced chord-wise deflection (DI-CD) has the maximum value with the abrupt change in its slope at the damage location under a PBIL. Hence, a novel damage localization method is proposed based on the DI-CD under a PBIL. The procedure may be summarized as: (1) identification of the modal flexibility matrices from acceleration measurements, (2) design for a PBIL for an inspection region of interest in a structure, (3) calculation of the chord-wise deflections for the PBIL using the modal flexibility matrices, and (4) damage localization by finding the location with the maximum DI-CD with the abrupt change in its slope within the inspection region. Procedures from (2)-(4) can be repeated for several inspection regions to cover the whole structure complementarily. Numerical verification studies were carried out on a simply supported beam and a three-span continuous beam model. Experimental verification study was also carried out on a two-span continuous beam structure with a steel box-girder. It was found that the proposed method can identify the damage existence and damage location for small damage cases with narrow cuts at the bottom flange.

Critical Speed Analysis of the Turbopump considering the Casing Structural Flexibility (케이징 구조 유연성을 고려한 터보펌프 임계 속도 해석)

  • 전성민;김진한;곽현덕;윤석환
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.92-97
    • /
    • 2006
  • A critical speed analysis is performed for a 30 ton thrust turbopump considering the casing structural flexibility. A full three-dimensional finite element method including rotor and casing is used to predict rotordynamic behavior. Rotor alone model and rotor-casing coupled model with fixed-fixed and free-free boundary conditions are calculated to investigate the effects of the casing structural flexibility. The stiffness of ball bearings are applied as unloaded and loaded values to consider rotor operating conditions in vacuum and real engine respectively. From the results of the numerical analyses, it is found that the effect of the casing structural flexibility reduces the critical speeds of the turbopump. Especially, the loaded rotor condition with higher bearing stiffness is affected dramatically rather than the unloaded rotor condition with lower bearing stiffness.