• 제목/요약/키워드: flexibility formulation

검색결과 85건 처리시간 0.02초

이차원 유체요소를 이용한 유체 저장구조물의 지진해석 (Seismic Analysis of liquid Storage Structures Using 2-Dimensional Fluid Elements)

  • 김영석;윤정방;김재민;김진웅
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.49-56
    • /
    • 1991
  • Seismic analysis of liquid storage structures is carried out by utilizing 2-dimensional fluid elements of a general purpose structural analysis computer program(ADINA), The present analysis focuses on the effects of the wall flexibility and the sloshing of the free water surface. Due considerations are given to the facts that the fluid has no shear resistance and the free surface motion is subjected to the gravity effect. To validate the present method using 2-dimensional fluid elements, the results of several example cases are compared with those by the Housner's approach for rigid wall case, and with those by the Eulerian formulation for flexible wall case.

  • PDF

전달영향계수법에 의한 원통형 셀 구조물의 자유진동해석 (Free Vibration Analysis of Cylindrical Shell Structures with Stiffeners by Transfer Influence Coefficient Method)

  • 문덕홍;여동준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.342-348
    • /
    • 1996
  • This paper describes the formulation for the vibration analysis of cylindrical shells with stiffeners by the transfer influence coefficient method. This method was developed on the base of the concept of the successive transmission of dynamic influence coefficients. The simple computational results from a personal computer demonstrate the validity of the present method, that is, the numerical high accuracy and the flexibility of programming, are compared with results of the transfer matrix method. It is also confirmed that the present algorithm could provide the solutions of high accuracy for system with a number of intermediate rigid supports. And all boundary conditions and the intermediate stiff supports such as intermediate rigid supports between shell and foundation can be treated only by adequately controlling the values of the spring constants.

  • PDF

New formulation for vibration analysis of Timoshenko beam with double-sided cracks

  • Ayatollahi, M.R.;Hashemi, R.;Rokhi, H.
    • Structural Engineering and Mechanics
    • /
    • 제34권4호
    • /
    • pp.475-490
    • /
    • 2010
  • It is the intention of this study to synthesize the effects of double-edge cracks on the dynamic characteristics of a beam. The stiffness matrix is first determined for a Timoshenko beam containing two same-line edge cracks. The presented model is then developed for elements with two parallel double-sided cracks, considering the interaction between the stress fields of adjacent cracks. Finally, a finite element code is implemented, to examine the influence of depth and location of double cracks, on the natural frequencies of the damaged system.

행렬해법에 의한 골조구조해석의 전산화 (Computerization of Matrix Analysis of Skeletal Structures)

  • 이재영
    • 한국농공학회지
    • /
    • 제22권1호
    • /
    • pp.87-95
    • /
    • 1980
  • General purpose programs are essential elements for the computerization of structural analysis. This paper is associated with actual formulation of such programs by matrix analysis. The basic theory of matrix analysis for skeletal structures, its implementation and techniques for developing efficient programs are discussed in this paper. Any shape of skeletal structure can be included in a single program for space frames. But in order to economize computing time and computer memory space, it is desirable to develop and operate seperate programs specialized into four categories; truss, planar frame, grid and space frame. As for general purpose programs, simplicity of input format and flexibility of output format should be duly considered. Compaction and solution of system equations are the most important aspects in computer programming of matrix analysis, and worth further study for more efficient computerization.

  • PDF

변위구속조건을 고려한 컴플라이언트 메커니즘 설계 (Compliant Mechanism Design with Displacement Constraint)

  • 김영기;민승재
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1779-1786
    • /
    • 2002
  • When the topology optimization is applied to the design of compliant mechanism, unexpected displacements of input and output port are generated since the displacement control is not included in the formulation. To devise a more precise mechanism, displacement constraint is formulated using the mutual potential energy concept and added to multi-objective function defined with flexibility and stiffness of a structure. The optimization problem is resolved by using Finite Element Method(FEM) and Sequential Linear Programming(SLP). Design examples of compliant mechanism with displacement constraint are presented to validate the proposed design method.

A Simple Mixed-Based Approach for Thin-Walled Composite Blades with Two-Cell Sections

  • Jung Sung Nam;Park Il-Ju
    • Journal of Mechanical Science and Technology
    • /
    • 제19권11호
    • /
    • pp.2016-2024
    • /
    • 2005
  • In this work, a mixed beam approach that combines both the stiffness and the flexibility methods has been performed to analyze the coupled composite blades with closed, two-cell cross-sections. The Reissner's semi-complementary energy functional is used to derive the beam force-displacement relations. Only the membrane part of the shell wall is taken into account to make the analysis simple and also to deliver a clear picture of the mixed method. All the cross section stiffness coefficients as well as the distribution of shear across the section are evaluated in a closed-form through the beam formulation. The theory is validated against experimental test data, detailed finite element analysis results, and other analytical results for coupled composite blades with a two-cell airfoil section. Despite the simple kinematic model adopted in the theory, an accuracy comparable to that of two-dimensional finite element analysis has been obtained for cases considered in this study.

층간균열이 존재하는 균일 열유동하의 섬유강화 적층복합재료의 열응력해석 (Thermal Stresses in a Laminated Fiber-Reinforced Composite Containing an Interlaminar Crack Under a Uniform Heat Flow)

  • 최형집;오준성;이강용
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.887-902
    • /
    • 1994
  • Within the framework of anisotropic thermoelasticity, the problem of an interlaminar crack in a laminated fiber-reinforced composite subjected to a uniform heat flow is investigated. Under a state of generalized plane deformation, dissimilar anisotropic half-spaces with different fiber orientations are considered to be bound together by a matrix interlayer containing the crack. The interlayer models the matrix-rich interlaminar region of the fibrous composite laminate. Based on the flexibility/stiffness matrix approach, formulation of the current crack problem results in having to solve two sets of singular integral equations for temperature and thermal stress analyses. Numerical results are obtained, illustrating the parametric effects of laminate stacking sequence, relative crack size, crack location, crack surface partial insulation, and fiber volume fraction on the values of mixed mode thermal stress intensity factors.

Rate-sensitive analysis of framed structures Part I: model formulation and verification

  • Izzuddin, B.A.;Fang, Q.
    • Structural Engineering and Mechanics
    • /
    • 제5권3호
    • /
    • pp.221-237
    • /
    • 1997
  • This paper presents a new uniaxial material model for rate-sensitive analysis addressing both the transient and steady-state responses. The new model adopts visco-plastic theory for the rate-sensitive response, and employs a three-parameter representation of the overstress as a function of the strain-rate. The third parameter is introduced in the new model to control its transient response characteristics, and to provide flexibility in fitting test data on the variation of overstress with strain-rate. Since the governing visco-plastic differential equation cannot be integrated analytically due to its inherent nonlinearity, a new single-step numerical integration procedure is proposed, which leads to high levels of accuracy almost independent of the size of the integration time-step. The new model is implemented within the nonlinear analysis program ADAPTIC, which is used to provide several verification examples and comparison with other experimental and numerical results. The companion paper extends the three-parameter model to trilinear static stress-strain relationships for steel and concrete, and presents application examples of the proposed models.

다목적을 고려한 FMS작업할당/경로선정과 분배규칙에 관한 연구 (A loading and sequencing problem in a random FMS)

  • 장영기;조재용
    • 산업경영시스템학회지
    • /
    • 제19권37호
    • /
    • pp.201-210
    • /
    • 1996
  • Although FMS implementation in Korea is not yet mature, the worldwide empirical data shows the diffusion of FMS is inevitable in near future. As the reletionships between the high capital cost and the relative benefits and advantages are complex to analyse, it is rather beneficial to prepare the effective operation strategies which exploit the FMS flexibility, such as machine loading with alternative routing and dispatching rules. This paper shows the formulation applying a goal programming model for the loading problem with objectives of minimizing the production cost and maximizing the machine utilization, including constraints such as machine tool capacity and demands, etc. A realistic random FMS model is developed for illustration. Since loading and dispatching are a composite of two interdependent tasks, simulation is made to investigate the interactions between the two.

  • PDF

시간 지연 시스템을 위한 적분 슬라이딩 모드 제어기의 LMI 기반 설계 (LMI-based Design of Integral Sliding Mode Controllers for Time-Delay Systems)

  • 최한호
    • 전기학회논문지
    • /
    • 제58권12호
    • /
    • pp.2480-2483
    • /
    • 2009
  • This paper presents an LMI-based method to design a integral sliding mode controller for a class of uncertain time-delay systems. Using LMIs we derive an existence condition of a sliding surface guaranteeing the asymptotic stability of the sliding mode dynamics. And we give a switching feedback control law. Our method is a generalization of the previous integral sliding mode control design methods. Since our method is based on LMIs, it gives design flexibility for combining various useful design criteria that can be captured in the LMI-based formulation. We also give LMI existence conditions of sliding surfaces guaranteeing a-stability or LQ performance constraint. Finally, we give a numerical design example to show the effectiveness of the proposed method.