• Title/Summary/Keyword: flavonol galactoside

Search Result 11, Processing Time 0.027 seconds

Flavonol Galactosides from Artemisia apiacea

  • Kim, Kyoung-Soon;Lee, Sang-Hyun;Kang, Kyoung-Hwan;Kim, Bak-Kwang
    • Natural Product Sciences
    • /
    • v.11 no.1
    • /
    • pp.10-12
    • /
    • 2005
  • Flavonol galactosides were isolated from the EtOAc fraction of Artemisia apiacea by repeated column chromatography. Their structures were elucidated as $isorhamnetin-3-O-{\beta}-D-galactoside$ (1) and $quercetin-3-O-{\beta}-D-galactoside$ (2) by chemical and spectroscopic analysis. This is the first report on the isolation of compound 2 from this plant.

Further Flavonol Glycosides from Myrsine africana Leaves

  • Arot, Lawrence O. Manguro;Midiwo, Jacob Ogweno;Kraus, Wolfgang
    • Natural Product Sciences
    • /
    • v.3 no.1
    • /
    • pp.8-10
    • /
    • 1997
  • A new flavonol glycoside, quercetin 3-rhamnosyl $(1{\rightarrow}3)$ galactoside [5] was isolated from the leaves of M. africana. The known compounds kaempferol 3-rutinoside [1], 3'-O-methylquercetin 3-rutinoside [2], quercetin 3-rutinoside [3], and quercetin 3-rhamnosyl $(1{\rightarrow}6)$ galactoside [4] were also isolated for the first time from this plant. Their structures were determined by chemical and spectroscopic methods.

  • PDF

Biosynthesis of trifolin, a bioactive flavonoid by biotransformation (생물전환으로 생리활성물질인 trifolin의 생합성)

  • Noh, Hye-Ryeong;Kang, Ju-Yeong;Kim, Bong-Gyu
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.3
    • /
    • pp.309-316
    • /
    • 2021
  • Kaempferol 3-O-galactoside (Trifolin), a member of the flavonol group, has been reported to have anticancer effects against promyelocytic leukemia, histocytic lymphoma, skin melanoma and lung cancer. Trifolin has been extracted and used from several plants, but the extraction process is complicated and the final yield is low. Biotransformation is an alternative tool to produce high value-added chemicals from inexpensive compounds. To synthesis trifolin from naringenin, three genes (PeFLS and OsUGE-PhUGT) were introduced into Escherichia coli, respectively. In order to synthesis trifolin from naringenin, a co-culture fermentation system was established by optimizing the cell concentration, biotransformation temperature and medium, isopropyl-β-D-thiogalactoside (IPTG) concentration, substrate supply concentration, and recombinant protein induction time. The established optimal conditions for trifolin production were a 3:1 ratio of BL-UGTE to BL-FLS, induction of recombinant protein at 25 ℃ for 4 h after addition of 2.0 mM IPTG, biotransformation at 30 ℃, and supply of 300 μM naringenin. Through the optimized co-culture fermentation system, trifolin was biosynthesized up to 67.3 mg/L.

Phytochemical variation of Quercus mongolica Fisch. ex Ledeb. and Quercus serrata Murray (Fagaceae) in Mt. Jiri, Korea - Their taxonomical and ecological implications - (지리산 신갈나무와 졸참나무의 식물화학적 변이 양상 - 분류학적, 생태학적 의미 -)

  • Park, Jin Hee
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.5
    • /
    • pp.574-587
    • /
    • 2014
  • In this study, vertical distribution patterns of Quercus mongolica Fisch. ex Ledeb. and Q. serrata Murray in Korea were recognized and possibility of introgressive hybridization and gene flow between Q. mongolica and Q. serrata in Mt. Jiri was inferred by flavonoid analyses. The most critical factor on distribution patterns was the altitude in accordance with temperature condition. A zonal distribution was recognized: Quercus mongolica zone in the upper area and Q. serrata zone in the lower area. In Central Korea, the range of vertical distribution of Q. mongolica was above alt. 100m, almost everywhere, whereas that of Q. serrata was from alt. 0 m to alt. 500(-700) m, and the species is rare above that altitude. But in Southern Korea, Q. serrata is found up to above alt. 1,000 m, whereas frequency of Q. mongolica reduces as elevation in decline and the species is rare below alt. 300 m, even though pure stands being formed on higher mountain slope. Altitudinal distribution of the two species, however, overlaps, where the two species occur together. Thirty-seven individuals of Q. mongolica and Q. serrata in Mt. Jiri and other area were examined for leaf flavonoid constituents. Twenty-three flavonoid compounds were isolated and identified; they were glycosylated derivatives of the flavonols kaempferol, quercetin, isorhamnetin, myricetin, and four compounds among the flavonoid compounds were acylated. Kaempferol 3-O-glucoside, quercetin 3-O-glucoside, quercetin 3-O-galactoside and its acylated compounds were major constituents and present in all individuals. Quercus mongolica is distinguished from Q. serrata by the presence of quercetin 3-O-arabinosylglucoside and by high concentration of three acylated compounds, acylated kaempferol 3-O-glucoside, quercetin 3-O-glucoside, quercetin 3-O-galactoside, and by relatively low concentration or lacking of rhamnosyl flavonol compounds. There are intraspecific variations in flavonoid profiles for Q. mongolica and Q. serrata, the flavonoid profiles for individuals of two species in hybrid zone (sympatric zone) tend to be similar to each other, qualitatively and quantitatively. These findings strongly suggest that gene exchange or gene flow occurs through the introgressive hybridization between Q. mongolica and Q. serrata in Mt. Jiri. Therefore, Quercus crispula, occupying morphologically intermediate position between Q. mongolica and Q. serrata, is suspected of being a hybrid taxon of two putative parental species.

Flavonoid Profiles of Quercus mongolica Fisch. ex Ledeb. and Q. serrata Murray (Fagaceae) in Mt. Seorak, Korea: Taxonomical and Ecological Implications (설악산 신갈나무와 졸참나무의 플라보노이드 조성과 분류학적, 생태학적 의미)

  • Park, Jin Hee
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1092-1101
    • /
    • 2014
  • In this study, the distribution patterns of Quercus mongolica and Q. serrata in Korea were investigated, and the possibility of introgressive hybridization and gene flow between Q. mongolica and Q. serrata in Mt. Seorak was inferred by flavonoid analyses. The most critical factor in the vertical and horizontal distribution patterns of Q. mongolica and Q. serrata was the temperature, in accordance with latitude and altitude. The species showed a zonal distribution, with a Q. mongolica zone in the upper area and a Q. serrata zone in the lower area. In Mt. Seorak, Central Korea, the range of the vertical distribution of Q. mongolica was generally above an altitude of 100 m, whereas that of Q. serrata was an altitude of 0-400 m (-500) and rarely above an altitude of 500 m. However, in Mt. Jiri, Southern Korea, Q. serrata was found up to an altitude of 1,000~1,200 m, whereas the frequency of Q. mongolica was reduced at lower elevations and the species was rare below an altitude of 300 m, although pure stands were found on higher mountain slopes above an altitude of 1,200 m. The altitudinal distribution of the two species overlapped, where the two species occurred together. The leaf flavonoid constituents of thirty-four individuals of Q. mongolica and Q. serrata in Mt. Seorak and Mt. Jiri, Korea were examined. Twenty-four flavonoid compounds were isolated and identified. These were glycosylated derivatives of flavonols kaempferol, quercetin, isorhamnetin, myricetin. Five compounds among the flavonoid compounds were acylated. Kaempferol 3-O-glucoside, quercetin 3-O-glucoside, quercetin 3-O-galactoside, and its acylated compounds were major constituents and present in all individuals. Quercus mongolica is distinguished from Q. serrata by the presence of quercetin 3-O-arabinosylglucoside, a high concentration of three acylated compounds (kaempferol 3-O-glucoside, quercetin 3-O-glucoside, and quercetin 3-O-galactoside), and a relatively low concentration or lack of rhamnosyl flavonol compounds. Intraspecific variations, however, were found in the flavonoid profiles of Q. mongolica and Q. serrata, and the flavonoid profiles of individuals belonging to the two species in a hybrid zone (sympatric zone) tended to be similar, qualitatively and quantitatively. These findings strongly suggest that gene exchange or gene flow occurs through introgressive hybridization between Q. mongolica and Q. serrata in Mt. Seorak.

Antioxidant Activity of Isolated Compounds from the Shoot of Aralia elata Seem (두릅 순에서 분리된 화합물의 항산화 활성)

  • Lee, Gi-Ho;Jung, Ji-Wook;Ahn, Eun-Mi
    • The Korea Journal of Herbology
    • /
    • v.24 no.4
    • /
    • pp.137-142
    • /
    • 2009
  • Objectives : This study was performed to investigate the antioxidant activities of isolated compounds from the shoot of Aralia elata. Methods : The methanol extract from the shoot of Aralia elata was fractionated into ethyl acetate, n-BuOH and $H_2O$ layers through solvent fractionation. Repeated silica gel, ODS column chromatography of n-BuOH layer afforded four flavonol glycosides. Their antioxidant activity was determined by measuring free radical scavenging activity by DPPH, ABTS and superoxide dismutase (SOD) like activity assay. Results : They were identified as quercetin 3,7-di-O-$\alpha$-rhamnopyranoside (1), quercetin 3-O-$\beta$-D-galactoside-7-O-$\alpha$-L-rhamnoside (2), kaempferol 3-O-$\beta$-glucosyl($1{\rightarrow}2$)-$\alpha$-rhamnoside-7-O-$\alpha$-rhamnoside (3) and quercetin 3-O-$\beta$-glucosyl($1{\rightarrow}2$)-$\alpha$-rhamnoside-7-O-$\beta$-rhamnoside (4) on the basis of spectroscopic data. The result showed that 1 is the most active compound in the DPPH and ABTS radical scavenging test. Conclusions : Isolated Compounds from the shoot of Aralia elata showed anti-oxidative effect.

Simultaneous analysis of anthocyanins and flavonols in various flower colors of Rhododendron schlippenbachii (royal azalea)

  • Oh, Soo-Min;Chun, Jin-Hyuk;Lee, Min-Ki;Kim, Jung-Bong;Kim, Sun-Ju
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.1
    • /
    • pp.104-113
    • /
    • 2017
  • Anthocyanins contained in Rhododendron schlippenbachii (royal azalea) are expressed in a variety of colors and affect flower colors. R. schlippenbachii flowers of seven colors (white, red group: pink, deep pink, red, purple group: light purple, purple, deep purple) were collected from the garden around KT&G building in the college of agriculture and life science. Seven types of anthocyanins [cyanidin 3-O-diglucoside, cyanidin 3-O-arabinoside-5-O-glucoside, cyanidin 3-O-galactoside, peonidin 3-O-arabinoside-5-O-glucoside, cyanidin 3-O-glucoside, cyanidin 3-O-(6"-O-malonyl) arabinoside, cyanidin 3-O-(6"-O-coumaroyl) glucoside] turned out to be from the cyanidin and peonidin series in R. schlippenbachii flowers. Also, seven types of flavonols [azaleatin 3-O-glucoside, azaleatin 3-O-arabinoside, azaleatin 3-O-rhamnoside, quercetin 3-O-galacatoside, quercetin 3-O-glucoside, quercetin 3-O-arabinoside, quercetin 3-O-rhamnoside] were identified in R. schlippenbachii flowers. Total anthocyanin amounts decreased in R. schlippenbachii flowers in the following order: 'deep pink' (8.07) > 'red' (6.37) > 'pink' (5.35) > 'deep purple' (0.78) > 'purple' (0.43) > 'light purple' ($0.22mg{\cdot}g^{-1}$ dry weight, DW) > 'white' (not detected). Total flavonol amounts decreased in the following order: 'pink' (97.78) > 'deep pink' (63.79) > 'deep purple' (61.98) > 'white' (57.58) > 'light purple' (47.06) > 'purple' (46.76) > 'red' ($7.60mg{\cdot}g^{-1}$ dry weight, DW). This study provided the quantitative and qualitative information for the variation of anthocyanin and flavonol compounds in R. schlippenbachii flowers. Furthermore, this information can contribute to the identification of anthocyanin and flavonol compounds in other Rhododendron flowers.

Studies on the Pharmaco-Constituents of Hydrocotyle japonica (I) (Hydrocotyle japonica의 약효성분에 관한 연구(I))

  • Cho, Eui-Hwan;Kim, Il-Hyuk
    • YAKHAK HOEJI
    • /
    • v.32 no.4
    • /
    • pp.281-286
    • /
    • 1988
  • For the investigation of medicinal resources in Hydrocotyle species, the studies were conducted to evaluate the pharmaco-constituents in Hydrocotyle japonica MAKINO (Umbelliferae), which is used as folk medicine in Korea. From the methyl alcohol extract of the whole plant, $isorhamnetin-3-O-{\beta}-D-galactoside$ ($C_{22}H_{22}O_{12}{\cdot}1/3H_2O$, bright yellow needle crystal, mp $247{\sim}248^{\circ}C$, $[{\alpha}]_D^{28}^{\circ}=-52.27^{\circ}$ in pyridine), one of three flavonol substances in extrat, was isolated and identified by physicochemical properties and spectroscopic evidences (UV, IR, NMR and MS etc.,) in comparison with authentic sample. This flavonoid was appeared from Hydrocotyle japonica MAKINO through phytochemical approaches at the outset.

  • PDF

Flavonoid chemistry of Fallopia sect. Reynoutria (Polygonaceae) in Korea (한국산 닭의덩굴속 호장근절(마디풀과)의 화학분류학적 연구)

  • Park, Jin Hee;Moon, Hye-Kyoung;Park, Chong-Wook
    • Korean Journal of Plant Taxonomy
    • /
    • v.41 no.1
    • /
    • pp.10-15
    • /
    • 2011
  • Fifteen populations comprising three taxa and a putative hybrid of Fallopia sect. Reynoutria in Korea were examined for their leaf flavonoid constituents. Nineteen flavonoid compounds were isolated and identified; they were glycosylated derivatives of the flavonols quercetin and kaempferol, and of the flavones apigenin and luteolin. Among them, quercetin 3-O-galactoside and quercetin 3-O-glucoside were major flavonoid constituents, and present in all taxa. The flavonoid data appear to be very useful for taxon delimitation, and all taxa examined are readily distinguished by their flavonoid profiles. In addition, the flavonoid data suggest that the Nonsan population may be of hybrid origin involving F. japonica var. japonica, F. forbesii, and F. sachalinensis. In F. japonica var. japonica, there is no apparent correlation between their levels of polyploidy and flavonoid chemistry, but geographical variation of the flavonoid profiles among some populations was detected.

Hybridization of Quercus aliena Blume and Q. serrata Murray in Korea - Analyses of Morphological variation and Flavonoid chemistry -

  • Park, Jin Hee;Park, Chong-Wook
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.2
    • /
    • pp.145-161
    • /
    • 2015
  • This research was conducted in order to understand the hybridization between Quercus aliena Blume and Q. serrata Murray in Korea which show wide range of morphological variations within species and interspecific variations of diverse overlapping characteristics caused by hybridization. Morphological analysis (principal components analysis; PCA) of 116 individuals representing two species and their intermediates were performed. As a result, two species were clearly distinguished in terms of morphology, and intermediate morpho-types assumed to be hybrids between the two species were mostly located in the middle of each parent species in the plot of the principal components analysis. There was a clear distinction between two species in trichome distribution pattern which is an important diagnostic character in taxonomy of genus Quercus, whereas intermediate morpho-types showed intermediate state between two species' trichome distributions. Forty-two individuals representing two species and their intermediates were examined for leaf flavonoid constituents. Twenty-three flavonoid compounds were isolated and identified: They were glycosylated derivatives of flavonols, kaempferol, quercetin, isorhamnetin and myricetin. The flavonoid constituents of Q. aliena were five glycosylated derivatives: kaempferol 3-O-galactoside, kaempferol 3-O-glucoside, quercetin 3-O-galactoside, quercetin 3-O-glucoside, and Isorhamnetin 3-O-glucoside. The flavonoid constituents of Q. serrata had 20 diverse flavonol compounds including five flavonoid compounds found in Q. aliena. It was found that there is a clear difference in flavonoid constituents of Q. aliena and Q. serrata. Flavonoid chemistry is very useful in recognizing each species and putative hybrids. The flavonoid constituents of intermediates were a mixture of the two species' constituents and they generally showed similar characteristics to morpho-types. The hybrids between Q. aliena and Q. serrata showed morphologically and chemically diverse characteristics and it is assumed that there are frequent interspecific hybridization and introgression.