• Title/Summary/Keyword: flavanone analogues

Search Result 3, Processing Time 0.015 seconds

Synthesis and Structure-activity Relationship of Cytotoxic $5,2^I,5^I$-Trihydroxy-7,8-dimethoxyflavanone Analogues

  • Min, Byung-Sun;Ahn, Byung-Zun;Bae, Ki-Hwan
    • Archives of Pharmacal Research
    • /
    • v.19 no.6
    • /
    • pp.543-550
    • /
    • 1996
  • Analogues of $2(S)-5, 2^{l}, 5^{l}$-trihydroxy-7, 8-dimethoxyflavanone, a naturally-occurring compound, which had been reported to have potent antitumor activity, were synthesized and examined for the cytotoxicity against three cancer cell lines. Among the intermediate chalcones and synthetic 5-hydroxy-7, 8-dimethoxyflavanone analogues, $({\pm})2^{l}, 5^{l}-dibenzyloxy-5, 7, 8-trimethoxyflavanone$ exhibited about 2-8 times stronger activity than $2(S)-5, 2^{l}, 5^{l}$-trihydroxy-7, 8-dimethoxyflavanone against L1210, K562 and A549 cancer cell lines. In the structure-activity relationship, it is suggested that among analogues of 5-hydroxy-7, 8-dimethoxyflavanone, the existence of two oxygenated groups of para-relation at $C-2^{I} and C-5^{I}$ positions on flavanone B-ring, may be necessary to exhibit effective cytotoxic activity.

  • PDF

Antitumor activity of 2(S)-5,$2^{I}$,$5^{I}$-trihydroxy-7,8-dimenthoxyflavanone and its analogues

  • Min, Byung-Sun;Chung, Kyeong-Soo;Bae, Ki-Hwan
    • Archives of Pharmacal Research
    • /
    • v.20 no.4
    • /
    • pp.368-371
    • /
    • 1997
  • In an effort to increase of the antitumor activity of 2(S)-$2^{I}$,$5^{I}$-trihydroxy-7, 8-dimethoxyflavanone isolated from Scutellaria indica, we synthesized its analogues, II, III and IV. They showed potent cytotoxicity in vitro against cancer cell lines, L1210, K562 and A549. On the basis of $ED_50$ values against the cancer cell lines, III exhibited about 2-7 times stronger activity than I against various cell lines. We tested the antitumor activity of the analogues against Sarcoma 180 cells in vivo and evaluated the structure-activity relationship. The antitumor activity appeared to be related to the hydrogen bond between carbonyl group at C-4 and hydroxyl group at C-5, in contrast to cytotoxic action.

  • PDF

Isolation and Identification of Antioxidants from Peanut Shells and the Relationship between Structure and Antioxidant Activity

  • Wee, Ji-Hyang;Moon, Jae-Hak;Eun, Jong-Bang;Chung, Jin-Ho;Kim, Young-Gook;Park, Keun-Hyung
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.116-122
    • /
    • 2007
  • Four compounds with antioxidant activity were isolated from the MeOH extract of peanut shells (pod) and identified as 5,7-dihydroxychromone (1), eriodictyol (2), 3',4',7-trihydroxyflavanone (3), and luteolin (4) by electron impact-mass spectrometry (EI-MS) and nuclear magnetic resonance (NMR) analyses. The relationship between antioxidant activity and chemical structure of the isolated compounds with their analogues [(-)-epicatechin, quercetin, taxifolin] was examined by measuring 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and using the 2-deoxy-D-ribose degradation system. The order of antioxidant activity on the basis of DPPH radical-scavenging was quercetin = (-)-epicatechin (6.0 molecules) > taxifolin (4,5 molecules) > 4 (luteolin; 4.0 molecules) > 2 (eriodictyol; 2.5 molecules) > 3 (3',4',7-trihydroxy-flavanone; 2.0 molecules) > 1 (5,7-dihydroxychromone; 0.5 molecules). On the other hand, using the 2-deoxy-D-ribose degradation system, the order of antioxidant activity was quercetin > 4 >> (-)-epicatechin ${\geq}\;2\;{\geq}$ taxifolin > 3 > 1. These compounds from peanut shells may provide defensive measures against oxidative stress and insects in the soil.