• 제목/요약/키워드: flat slabs

검색결과 94건 처리시간 0.025초

Behaviours of steel-fibre-reinforced ULCC slabs subject to concentrated loading

  • Wang, Jun-Yan;Gao, Xiao-Long;Yan, Jia-Bao
    • Structural Engineering and Mechanics
    • /
    • 제71권4호
    • /
    • pp.407-416
    • /
    • 2019
  • Novel steel fibre reinforced ultra-lightweight cement composite (ULCC) with compressive strength of 87.3MPa and density of $1649kg/m^3$ was developed for the flat slabs in civil buildings. This paper investigated structural behaviours of ULCC flat slabs according to a 4-specimen test program under concentrated loading and some reported test results. The investigated governing parameters on the structural behaviours of the ULCC slabs include volume fraction of the steel fibre and the patch loading area. The test results revealed that ULCC flat slabs with and without flexure reinforcement failed in different failure mode, and an increase in volume fraction of the steel fibre and loading area led to an increase in flexural resistance for the ULCC slabs without flexural reinforcement. Based on the experiment results, the analytical models were developed and also validated. The validations showed that the analytical models developed in this paper could predict the ultimate strength of the ULCC flat slabs with and without flexure reinforcement reasonably well.

Deformation of multi-storey flat slabs, a site investigation

  • Tovi, Shivan;Goodchild, Charles;B-Jahromi, Ali
    • Advances in concrete construction
    • /
    • 제5권1호
    • /
    • pp.49-63
    • /
    • 2017
  • Traditional reinforced concrete slabs and beams are widely used for building. The use of flat slab structures gives advantages over traditional reinforced concrete building in terms of design flexibility, easier formwork and use of space and shorter building time. Deflection of the slab plays a critical role on the design and service life of building components; however, there is no recent research to explore actual deformation of concrete slab despite various advancements within the design codes and construction technology. This experimental study adopts the Hydrostatic Levelling Cells method for monitoring the deformation of a multi-storey building with flat slabs. In addition, this research presents and discusses the experimental results for the vertical deformation.

Strengthening of Cutouts in Existing One-Way Spanning R. C. Flat Slabs Using CFRP Sheets

  • Shehab, Hamdy K.;Eisa, Ahmed S.;El-Awady, Kareem A.
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.327-341
    • /
    • 2017
  • Openings in slabs are usually required for many different applications such as aeriation ducts and air conditioning. Opening in concrete slabs due to cutouts significantly decrease the member stiffness. There are different techniques to strengthen slabs with opening cutouts. This study presents experimental and numerical investigations on the use of Carbon Fiber Reinforced Polymers (CFRP) as strengthening material to strengthen and restore the load carrying capacity of R.C. slabs after having cutout in the hogging moment region. The experimental program consisted of testing five (oneway spanning R.C. flat slabs) with overhang. All slabs were prismatic, rectangular in cross-section and nominally 2000 mm long, 1000 mm width, and 100 mm thickness with a clear span (distance between supports) of 1200 mm and the overhang length is 700 mm. All slabs were loaded up to 30 kN (45% of ultimate load for reference slab, before yielding of the longitudinal reinforcement), then the load was kept constant during cutting concrete and steel bars (producing cut out). After that operation, slabs were loaded till failure. An analytical study using finite element analysis (FEA) is performed using the commercial software ANSYS. The FEA has been validated and calibrated using the experimental results. The FE model was found to be in a good agreement with the experimental results. The investigated key parameters were slab aspect ratio for the opening ratios of [1:1, 2:1], CFRP layers and the laminates widths, positions for cutouts and the CFRP configurations around cutouts.

Minimum thickness of flat plates considering construction load effect

  • Hwang, Hyeon-Jong;Ma, Gao;Kim, Chang-Soo
    • Structural Engineering and Mechanics
    • /
    • 제69권1호
    • /
    • pp.1-10
    • /
    • 2019
  • In the construction of flat plate slabs, which are widely used for tall buildings but have relatively low flexural stiffness, serviceability problems such as excessive deflections and cracks are of great concern. To prevent excessive deflections at service load levels, current design codes require the minimum slab thickness, but the requirement could be unconservative because it is independent on loading and elastic modulus of concrete, both of which have significant effects on slab deflections. In the present study, to investigate the effects of the construction load of shored slabs, reduced flexural stiffness and moment distribution of early-age slabs, and creep and shrinkage of concrete on immediate and time-dependent deflections, numerical analysis was performed using the previously developed numerical models. A parametric study was performed for various design and construction conditions of practical ranges, and a new minimum permissible thickness of flat plate slabs was proposed satisfying the serviceability requirement for deflection. The proposed minimum slab thickness was compared with current design code provisions and numerical analysis results, and it agreed well with the numerical analysis results.

Punching shear behavior of recycled aggregate concrete

  • Dan, Saikat;Chaudhary, Manpreet;Barai, Sudhirkumar V.
    • Computers and Concrete
    • /
    • 제21권3호
    • /
    • pp.321-333
    • /
    • 2018
  • Flat-slabs, being a significant structural component, not only reduce the dead load of the structure but also reduce the amount of concrete required for construction. Moreover the use of recycled aggregates lowers the impact of large scale construction to nearby ecosystems. Recycled aggregate based concrete being a quasi-brittle material shows enormous cracking during failure. Crack growth in flat-slabs is mostly in sliding mode (Mode II). Therefore sufficient sections need to be provided for resistance against such failure modes. The main objective of the paper is to numerically determine the ultimate load carrying capacity of two self-similar flat-slab specimens and validate the results experimentally for the natural aggregate as well as recycled aggregate based concrete. Punching shear experiments are carried out on circular flat-slab specimen on a rigid circular knife-edge support built out of both normal (NAC) and recycled aggregate concrete (RAC, with full replacement). Uniaxial compression and bending tests have been conducted on cubes, cylinders and prisms using both types of concrete (NAC and RAC) for its material characterization and use in the numerical scheme. The numerical simulations have been conducted in ABAQUS (a known finite element software package). Eight noded solid elements have been used to model the flat slab and material properties have been considered from experimental tests. The inbuilt Concrete Damaged Plasticity model of ABAQUS has been used to monitor crack propagation in the specimen during numerical simulations.

Reshoring effects on deflections of multi-shored flat plate systems under construction

  • Kang, Su-Min;Eom, Tae-Sung;Kim, Jae-Yo
    • Structural Engineering and Mechanics
    • /
    • 제45권4호
    • /
    • pp.455-470
    • /
    • 2013
  • RC flat plates that have no flexural stiffness by boundary beams may be governed by a serviceability as well as a strength condition. A construction sequence and its impact on the distributions of construction loads among slabs tied by shores are decisive factors influencing immediate and long term performances of flat plate. Over-loading and tensile cracking in early-aged slabs significantly increase the deflection of a flat plate system under construction. A reshoring work may be helpful in reducing slab deflections by controlling the vertical distributions of construction loads in a multi-shored flat plate system. In this study, a change of construction loads by reshoring works and its effects on deflections of flat plate systems under construction are analyzed. The slab construction loads with various reshoring schemes are defined by a simplified method, and the practical calculation of slab deflections with considering construction sequences and concrete cracking effects is applied. From parametric studies, the reshoring works are verified to reduce construction loads and slab deflections.

Investigation on mechanical performance of flat steel plate-lightweight aggregate concrete hollow composite slab

  • Yang, Yong;Chen, Yang;Yang, Ye;Zeng, Susheng
    • Steel and Composite Structures
    • /
    • 제31권4호
    • /
    • pp.329-340
    • /
    • 2019
  • An innovated type of the flat steel plate-lightweight aggregate concrete hollow composite slab was presented in this paper. This kind of the slab is composed of flat steel plate and the lightweight aggregate concrete slab, which were interfaced with a set of perfobond shear connectors (PBL shear connectors) with circular hollow structural sections (CHSS) and the shear stud connectors. Five specimens were tested under static monotonic loading. In the test, the influence of shear span/height ratios and arrangements of CHSS on bending capacity and flexural rigidity of the composite slabs were investigated. Based on the test results, the crack patterns, failure modes, the bending moment-curvature curves as well as the strains of the flat steel plate and the concrete were focused and analyzed. The test results showed that the flat steel plate was fully connected to the lightweight aggregate concrete slab and no obvious slippage was observed between the steel plate and the concrete, and the composite slabs performed well in terms of bending capacity, flexural rigidity and ductility. It was further shown that all of the specimens failed in bending failure mode regardless of the shear span/height ratios and the arrangement of CHSS. Moreover, the plane-section assumption was proved to be valid, and the calculated formulas for predicting the bending capacity and the flexural rigidity of the composite slabs were proposed on the basis of the experimental results.

시공 계획을 고려한 플랫 플레이트 최소 두께 (Minimum Thickness Requirements of Flat Plate Considering Construction Scheme)

  • 강성훈;최경규;박홍근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.631-636
    • /
    • 2002
  • It is common in multistory flat-plate structures that newly cast slabs are supported by a number of previously cast floors. Then the weight of newly cast slabs is imposed on shored previously cast floors as load, and this load may be large as double as dead load. Because early-age construction loads cause large immediate deflection and creep deflection with cracks, this loads influence long-term behavior of slabs. In current provision, the minimum thickness is required to satisfy serviceability But this minimum thickness based on historical precedent is determined by span length, therefore the minimum thickness of current provision can not includes properly the effect of construction scheme including the number of shored floors and construction cycle. In the present study, a minimum thickness criterion, which includes the effect of concrete strength, geometry of slabs and construction scheme, was developed from computer-based iteration using deflection calculation procedure of current code method.

  • PDF

수평하중을 받는 플랫 플레이트 슬래브 해석을 위한 수정된 등가골조모델 (Modified Equivalent Frame Models for Flat Plate slabs Under Lateral Load)

  • 박영미;조경현;한상환;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.272-275
    • /
    • 2004
  • This study is to propose a modified equivalent frame method under lateral loading. ACI 318-02 allows the equivalent frame method to conduct slab analysis subjected to lateral loads. However, current method can not predict the behavior of the slabs particularly under lateral loading because the equivalent frame method in the ACI 318 has been developed against gravity loads. This study provides more precise model for the analysis of the flat plate slabs under lateral loading. The model reflect the force transfer mechanism of slabs, column and torsional member more accurately than the existing model. The accuracy of this model is verified by compared with finite element method analysis results.

  • PDF

Progressive collapse resistance of flat slabs: modeling post-punching behavior

  • Mirzaeia, Yaser;Sasani, Mehrdad
    • Computers and Concrete
    • /
    • 제12권3호
    • /
    • pp.351-375
    • /
    • 2013
  • Post-punching resistance of a flat slab can help redistribute the gravity loads and resist progressive collapse of a structure following initial damage. One important difficulty with accounting for the post-punching strength of a slab is the discontinuity that develops following punching shear. A numerical simulation technique is proposed here to model and evaluate post-punching resistance of flat slabs. It is demonstrated that the simulation results of punching shear and post-punching response of the model of a slab on a single column are in good agreement with corresponding experimental data. It is also shown that progressive collapse due to a column removal (explosion) can lead to punching failure over an adjacent column. Such failure can propagate throughout the structure leading to the progressive collapse of the structure. Through post-punching modeling of the slab and accounting for the associated discontinuity, it is also demonstrated that the presence of an adequate amount of integrity reinforcement can provide an alternative load path and help resist progressive collapse.