• 제목/요약/키워드: flat plate structures

검색결과 181건 처리시간 0.024초

Study of a new type of steel slit shear wall with introduced out-of-plane folding

  • He, Liusheng;Chen, Shang;Jiang, Huanjun
    • Structural Engineering and Mechanics
    • /
    • 제75권2호
    • /
    • pp.229-237
    • /
    • 2020
  • The steel slit shear wall (SSSW), made by cutting vertical slits in a steel plate, is increasingly used for the seismic protection of building structures. In the domain of thin plate shear walls, the out-of-plane buckling together with the potential fracture developed at slit ends at large lateral deformation may result in degraded shear strength and energy dissipation, which is not desirable in view of seismic design. To address this issue, the present study proposed a new type of SSSW made by intentionally introducing initial out-of-plane folding into the originally flat slitted plate. Quasi-static cyclic tests on three SSSWs with different amplitudes of introduced out-of-plane folding were conducted to study their shear strength, elastic stiffness, energy dissipation capacity and buckling behavior. By introducing proper amplitude of out-of-plane folding into the SSSW fracture at slit ends was eliminated, plumper hysteretic behavior was obtained and there was nearly no strength degradation. A method to estimate the shear strength and elastic stiffness of the new SSSW was also proposed.

Flat Plate Type 소형 냉각소자 개발 (Development of Flat Plate Type Small Cooling Device)

  • 문석환;황건;유인규;조경익;유병곤
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.170-174
    • /
    • 2008
  • Recently, a problem related to the thermal management in portable electronic and telecommunication devices is becoming issued. That is due to the trend of slimness of the devices, so it is not easy to find the optimal thermal management technology for the devices. From now on, a pressed circular type cooling device has been mainly used, however the cooling device with thin thickness is becoming needed by the inner space constraint. In the present study, the silicon and metal flat plate type cooling device with the separated vapor and liquid flow path was designed and fabricated. Through the experimental study, the normal isothermal characteristic by vapor-liquid phase change was confirmed and the cooling device with 70mm of total length showed 6.8W of the heat transfer rate within the range of $4{\sim}5^{\circ}C$/W of thermal resistance. In the meantime, the metal cooling device was developed for commercialization. The device was designed to have all structures of evaporator, vapor flow path, liquid flow path and condenser in one plate. And an envelope of that could be completed by combining the two plates of same structure and size. And the simplicity of fabrication process and reduction of manufacturing cost could be accomplished by using the stamping technology for fabricating large flow paths relatively. In the future, it will be possible to develop the commercialized cooling device by revising the fabrication process and enhancing the thermal performance of that.

  • PDF

Control of the flow past a sphere in a turbulent boundary layer using O-ring

  • Okbaz, Abdulkerim;Ozgoren, Muammer;Canpolat, Cetin;Sahin, Besir;Akilli, Huseyin
    • Wind and Structures
    • /
    • 제35권1호
    • /
    • pp.1-20
    • /
    • 2022
  • This research work presents an experimental study's outcomes to reveal the impact of an O-ring on the flow control over a sphere placed in a turbulent boundary layer. The investigation is performed quantitatively and qualitatively using particle image velocimetry (PIV) and dye visualization. The sphere model having a diamater of 42.5 mm is located in a turbulent boundary layer flow over a smooth plate for gap ratios of 0≤G/D≤1.5 at Reynolds number of 5 × 103. Flow characteristics, including patterns of instantaneous vorticity, streaklines, time-averaged streamlines, velocity vectors, velocity fluctuations, Reynolds stress correlations, and turbulence kinetic energy (), are compared and discussed for a naked sphere and spheres having O-rings. The boundary layer velocity gradient and proximity of the sphere to the flat plate profoundly influence the flow dynamics. At proximity ratios of G/D=0.1 and 0.25, a wall jet is formed between lower side of the sphere and flat plate, and velocity fluctuations increase in regions close to the wall. At G/D=0.25, the jet flow also induces local flow separations on the flat plate. At higher proximity ratios, the velocity gradient of the boundary layer causes asymmetries in the mean flow characteristics and turbulence values in the wake region. It is observed that the O-ring with various placement angles (𝜃) on the sphere has a considerable alteration in the flow structure and turbulence statistics on the wake. At lower placement angles, where the O-ring is closer to the forward stagnation point of the sphere, the flow control performance of the O-ring is limited; however, its impact on the flow separation becomes pronounced as it is moved away from the forward stagnation point. At G/D=1.50 for O-ring diameters of 4.7 (2 mm) and 7 (3 mm) percent of the sphere diameter, the -ring exhibits remarkable flow control at 𝜃=50° and 𝜃=55° before laminar flow separation occurrence on the sphere surface, respectively. This conclusion is yielded from narrowed wakes and reductions in turbulence statistics compared to the naked sphere model. The O-ring with a diameter of 3 mm and placement angle of 50° exhibits the most effective flow control. It decreases, in sequence, streamwise velocity fluctuations and length of wake recovery region by 45% and 40%, respectively, which can be evaluated as source of decrement in drag force.

Hysteretic performance of SPSWs with trapezoidally horizontal corrugated web-plates

  • Kalali, Hamed;Hajsadeghi, Mohammad;Zirakian, Tadeh;Alaee, Farshid J.
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.277-292
    • /
    • 2015
  • Previous research has shown that steel plate shear walls (SPSWs) are efficient lateral force-resisting systems against both wind and seismic loads. A properly designed SPSW can have high initial stiffness, strength, and energy absorption capacity as well as superior ductility. SPSWs have been commonly designed with unstiffened and stiffened infill plates based on economical and performance considerations. Recent introduction and application of corrugated plates with advantageous structural features has motivated the researchers to consider the employment of such elements in stiffened SPSWs with the aim of lowering the high construction cost of such high-performing systems. On this basis, this paper presents results from a numerical investigation of the hysteretic performance of SPSWs with trapezoidally corrugated infill plates. Finite element cyclic analyses are conducted on a series of flat- and corrugated-web SPSWs to examine the effects of web-plate thickness, corrugation angle, and number of corrugation half-waves on the hysteretic performance of such structural systems. Results of the parametric studies are indicative of effectiveness of increasing of the three aforementioned web-plate geometrical and corrugation parameters in improving the cyclic response and energy absorption capacity of SPSWs with trapezoidally corrugated infill plates. Increasing of the web-plate thickness and number of corrugation half-waves are found to be the most and the least effective in adjusting the hysteretic performance of such promising lateral force-resisting systems, respectively. Findings of this study also show that optimal selection of the web-plate thickness, corrugation angle, and number of corrugation half-waves along with proper design of the boundary frame members can result in high stiffness, strength, and cyclic performances of such corrugated-web SPSWs.

적응적 쉘유한요소를 이용한 박스형 구조물의 좌굴해석 (Buckling Analysis of Box-typed Structures using Adaptive Shell Finite Elements)

  • 송명관;김선훈
    • 한국전산구조공학회논문집
    • /
    • 제20권3호
    • /
    • pp.265-272
    • /
    • 2007
  • 본 논문에서는 적응적 h-유한요소 세분화에 의한 박스형 절판 구조물의 선형좌굴 유한요소해석법을 제안한다. 면내회전 자유도를 갖는 변절점 평판쉘유한요소를 사용하여 유한요소의 거동을 개선하고 6자유도를 갖는 다른 유한요소와의 자유도의 연결을 용이하게 한다. 이와 같이 개발된 평판쉘유한요소에 의하여 박스형 절판구조물의 정확한 구조해석이 가능한데, 변절점유한요소를 정식화함으로써 적응적 h-유한요소 세분화시에 발생하는 다른 패턴의 사각형 유한요소 세분화망의 연결을 용이하게 해결한다. 오차평가에 대한 개선된 응력장을 얻기 위하여 상위수렴 조각회복법을 적용한다. 이와 같이 상위수렴 조각회복법에 의한 개선된 응력장에 의하여 구성된 유한요소 세분화망을 이용하여 좌굴하중과 좌굴모드를 자동적으로 구할 수 있도록 한다.

복수 압전 가진기의 최적 설계를 통한 판구조물의 소음제어 (Noise Control of Plate Structures with Optimal Design of Multiple Piezoelectric Actuators)

  • 김재환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.263-270
    • /
    • 1996
  • 본 연구에서는 여러개의 원판형 압전소자가 부착된 판구조물의 소음제어를 다루었다. 판재의 아래에는 소음원이 위치하고 이 소음원은 판재를 가진한다. 구조물 및 압전소자는 3차원 요소, 구조물 요소 및 천이요소의 조화로 이루어지는 유한요소로 모델링 되었다. 최적화 과정의 목적함수는 구조물로부터 복사되는 소음 에너지이고 설계변수는 원판형 압전소자의 위치, 크기 및 인가되는 전압이 사용되었다. 최적설계과정에서 요구되는 자동격자형성이 언급되었다. 구조물의 공진 및 비공진 주파수에서 최적설계가 행해졌으며 괄목할 만한 소음감소를 얻었다. 이 결고는 음향 하중의 형태가 다르게 변하더라도 크게 변하지 않는 것이 밝혀졌다. 또한 한 주파수 뿐 아니라 넓은 주파수 영역에서도 압전가진기의 전압을 조정함으로써 좋은감소를 얻을 수 있다.

  • PDF

분포하중(分布荷重)을 받는 구형판(矩形板)의 탄성해석(彈性解析) (Analysis of Rectangular Plates under Distributed Loads of Various Intensity with Interior Supports at Arbitrary Positions)

  • 장석윤
    • 대한조선학회지
    • /
    • 제13권1호
    • /
    • pp.17-23
    • /
    • 1976
  • Some methods of analysis of rectangular plates under distributed load of various intensity with interior supports are presented herein. Analysis of many structures such as bottom, side shell, and deck plate of ship hull and flat slab, with or without internal supports, Floor systems of bridges, included crthotropic bridges is a problem of plate with elastic supports or continuous edges. When the four edges of rectangular plate is simply supported, the double Fourier series solution developed by Navier can represent an exact result of this problem. If two opposite edges are simply supported, Levy's method is available to give an "exact" solution. When the loading condition and supporting condition of a plate does not fall into these cases, no simple analytic method seems to be feasible. Analysis of a simply supported rectangular plate under irregularly distributed loads of various intensity with internal supports is carried out by applying Navier solution well as the "Principle of Superposition." Finite difference technique is used to solve plates under irregularly distributed loads of various intensity with internal supports and with various boundary conditions. When finite difference technique is applied to the Lagrange's plate bending equation, any of fourth order derivative term in this equation produces at least five pivotal points leading to some troubles when the resulting linear algebraic equations are to be solved. This problem was solved by reducing the order of the derivatives to two: the fourth order partial differential equation with one dependent variable, namely deflection, is changed to an equivalent pair of second order partial differential equations with two dependent variables. Finite difference technique is then applied to transform these equations to a set of simultaneous linear algebraic equations. Principle of Superposition is then applied to handle the problems caused by concentrated loads and interior supports. This method can be used for the cases of plates under irregularly distributed loads of various intensity with arbitrary conditions such as elastic supports, or continuous edges with or without interior supports, and this method can also be solve the influence values of deflection, moment and etc. at arbitrary position of plates under the live load.

  • PDF

Application of unified equivalent frame method to two-way slab structures with beams

  • Choi, Seung-Ho;Lee, Deuck Hang;Oh, Jae-Yuel;Cho, Hae-Chang;Lee, Jae-Yeon;Kim, Kang Su
    • Computers and Concrete
    • /
    • 제22권4호
    • /
    • pp.365-372
    • /
    • 2018
  • The current design codes present an equivalent frame method (EFM) for the analysis and design of two-way slab structures. However, since the EFM was developed to be suitable for two-way slab structures subjected to gravity loads only, it brings many problems in its application to the analysis of two-way slabs to which gravity and lateral loads are applied simultaneously. Therefore, authors proposed the unified equivalent frame method (UEFM) that can analyze the structural behavior of flat-plate slab systems subjected to gravity and lateral loads in their previous studies. In this study, the UEFM was modified to be applicable to the two-way slab system with beams. In addition, the accuracy of the proposed UEFM was then examined by comparing it to the lateral behaviors of the two-way slab specimens.

주기적 국소교란이 난류 경계층에 미치는 영향 (Effects of Periodic Local Forcing on a Turbulent Boundary Layer)

  • 박상현;이인원;성형진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.472-478
    • /
    • 2000
  • An experimental study is performed to analyze flow structures behind a local suction/blowing in a flat-plate turbulent boundary layer, The local forcing is given to the boundary layer flow by means of a sinusoidally oscillating jet issuing from a thin spanwise slot at the wall. The Reynolds number based on the momentum thickness is about $Re_{\theta}=1700$. The effects of local forcing are scrutinized by altering the forcing frequency $(0.011{\leq}f^+{\leq}0.044)$. The forcing amplitude is fixed at $A_0=0.4$. It is found that a small local forcing reduces the skin friction, and this reduction increases with the forcing frequency. A phase-averaging technique is employed to capture the coherent structures. Velocity signals are decomposed into a periodic part and a fluctuating part. An organized spanwise vortical structure is generated by the local forcing. The larger reduction of skin friction for the higher forcing frequencies is attributed to the diminished adverse effect of the secondary vortex. An investigation of the random fluctuation components reveals that turbulent energy is concentrated near the center of vortical structures.

  • PDF

Buckling Strength Increment of Curved Panels Due to Rotational Stiffness of Closed-Section Ribs Under Uniaxial Compression

  • Andico, Arriane Nicole P.;Park, Yong-Myung;Choi, Byung H.
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1363-1372
    • /
    • 2018
  • Recently, there have been studies about the increasing effect on the local plate buckling strength of flat plates when longitudinally stiffened with closed-section ribs and an approximate solution to quantitatively estimate these effects were suggested for flat plates. Since there are few studies to utilize such increasing effect on curved panels and a proper design method is not proposed, thus, this study aims to numerically evaluate such effect due to the rotational stiffness of closed-section ribs on curved panels and to propose an approximate method for estimating the buckling strength. Three-dimensional finite element models were set up using a general structural analysis program ABAQUS and a series of parametric numerical analyses were conducted in order to examine the variation of buckling stresses along with the rotational stiffness of closed-section ribs. By using a methodology that combine the strength increment factor due to the restraining effect by closed-section ribs and the buckling coefficient of the panel curvature, the approximate solutions for the estimation of buckling strength were suggested. The validity of the proposed methods was verified through a comparative study with the numerical analysis results.