• Title/Summary/Keyword: flash storage device

Search Result 89, Processing Time 0.024 seconds

An Efficient Index Buffer Management Scheme for a B+ tree on Flash Memory (플래시 메모리상에 B+트리를 위한 효율적인 색인 버퍼 관리 정책)

  • Lee, Hyun-Seob;Joo, Young-Do;Lee, Dong-Ho
    • The KIPS Transactions:PartD
    • /
    • v.14D no.7
    • /
    • pp.719-726
    • /
    • 2007
  • Recently, NAND flash memory has been used for a storage device in various mobile computing devices such as MP3 players, mobile phones and laptops because of its shock-resistant, low-power consumption, and none-volatile properties. However, due to the very distinct characteristics of flash memory, disk based systems and applications may result in severe performance degradation when directly adopting them on flash memory storage systems. Especially, when a B-tree is constructed, intensive overwrite operations may be caused by record inserting, deleting, and its reorganizing, This could result in severe performance degradation on NAND flash memory. In this paper, we propose an efficient buffer management scheme, called IBSF, which eliminates redundant index units in the index buffer and then delays the time that the index buffer is filled up. Consequently, IBSF significantly reduces the number of write operations to a flash memory when constructing a B-tree. We also show that IBSF yields a better performance on a flash memory by comparing it to the related technique called BFTL through various experiments.

A Flash Memory Management Method for Enhancing the Recovery Performance (복구 성능 향상을 위한 플래시 메모리 관리 기법)

  • Park, Song-Hwa;Lee, Jung-Hoon;Cho, Sung-Woo;Kim, Sang-Hyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.5
    • /
    • pp.235-243
    • /
    • 2018
  • NAND flash memory has been widely used for embedded systems as storage device and the flash memory file systems such as JFFS2, YAFFS/YAFFS2 have been adopted by these embedded systems. The flash memory file systems provide the high performance and overcome the limitations of flash memory. However, these file systems don't solve the slow mount time problem when a sudden power failure happens. In this paper, we proposed a flash memory management method for enhancing the recovery performance. The proposed method manages the flash memory block type and stores the block type information at recovery image block. When file operations are occurred, our method stores the file information at the metadata block before and after the file operation. When mounting the flash memory, our method only scans the recovery image blocks and metadata blocks. The proposed method reduces the mount time by seeking the metadata block locations fast by using the recovery image blocks. We implemented the proposed method and evaluation results show that our method reduces the mount time 13 ~ 46 % compared with YAFFS2.

AS B-tree: A study on the enhancement of the insertion performance of B-tree on SSD (AS B-트리: SSD를 사용한 B-트리에서 삽입 성능 향상에 관한 연구)

  • Kim, Sung-Ho;Roh, Hong-Chan;Lee, Dae-Wook;Park, Sang-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.18D no.3
    • /
    • pp.157-168
    • /
    • 2011
  • Recently flash memory has been being utilized as a main storage device in mobile devices, and flashSSDs are getting popularity as a major storage device in laptop and desktop computers, and even in enterprise-level server machines. Unlike HDDs, on flash memory, the overwrite operation is not able to be performed unless it is preceded by the erase operation to the same block. To address this, FTL(Flash memory Translation Layer) is employed on flash memory. Even though the modified data block is overwritten to the same logical address, FTL writes the updated data block to the different physical address from the previous one, mapping the logical address to the new physical address. This enables flash memory to avoid the high block-erase cost. A flashSSD has an array of NAND flash memory packages so it can access one or more flash memory packages in parallel at once. To take advantage of the internal parallelism of flashSSDs, it is beneficial for DBMSs to request I/O operations on sequential logical addresses. However, the B-tree structure, which is a representative index scheme of current relational DBMSs, produces excessive I/O operations in random order when its node structures are updated. Therefore, the original b-tree is not favorable to SSD. In this paper, we propose AS(Always Sequential) B-tree that writes the updated node contiguously to the previously written node in the logical address for every update operation. In the experiments, AS B-tree enhanced 21% of B-tree's insertion performance.

Performance Improvement of Asynchronous Mass Memory Module Using Error Correction Code (에러 보정 코드를 이용한 비동기용 대용량 메모리 모듈의 성능 향상)

  • Ahn, Jae Hyun;Yang, Oh;Yeon, Jun Sang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.112-117
    • /
    • 2020
  • NAND flash memory is a non-volatile memory that retains stored data even without power supply. Internal memory used as a data storage device and solid-state drive (SSD) is used in portable devices such as smartphones and digital cameras. However, NAND flash memory carries the risk of electric shock, which can cause errors during read/write operations, so use error correction codes to ensure reliability. It efficiently recovers bad block information, which is a defect in NAND flash memory. BBT (Bad Block Table) is configured to manage data to increase stability, and as a result of experimenting with the error correction code algorithm, the bit error rate per page unit of 4Mbytes memory was on average 0ppm, and 100ppm without error correction code. Through the error correction code algorithm, data stability and reliability can be improved.

Design of the Virtual SD Memory Card System on the Embedded Linux (임베디드 리눅스에서의 가상 SD 메모리 카드 시스템 설계)

  • Moon, Ji-Hoon;Oh, Jae-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.77-82
    • /
    • 2014
  • SD memory cards are widely used in portable digital devices, and most of them exploit NAND flash memory as their storage, so that they have a feature of storing users' important data safely with low costs. In case of using NAND flash memory as storage, however, there is no method to store users' data if memory capacity is insufficient when transferring a large volume of data. This paper proposes a virtual SD memory card system. It used a SD memory card device driver to process data requested from a host by exploiting external storage rather than by exploiting flash memory as a memory core for storing data to the SD memory card. For experiment, it used the FPGA-based SD card slave controller IP on the SMC controller with a S3C2450 ARM CPU to test.

Anticipatory I/O Management for Clustered Flash Translation Layer in NAND Flash Memory

  • Park, Kwang-Hee;Yang, Jun-Sik;Chang, Joon-Hyuk;Kim, Deok-Hwan
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.790-798
    • /
    • 2008
  • Recently, NAND flash memory has emerged as a next generation storage device because it has several advantages, such as low power consumption, shock resistance, and so on. However, it is necessary to use a flash translation layer (FTL) to intermediate between NAND flash memory and conventional file systems because of the unique hardware characteristics of flash memory. This paper proposes a new clustered FTL (CFTL) that uses clustered hash tables and a two-level software cache technique. The CFTL can anticipate consecutive addresses from the host because the clustered hash table uses the locality of reference in a large address space. It also adaptively switches logical addresses to physical addresses in the flash memory by using block mapping, page mapping, and a two-level software cache technique. Furthermore, anticipatory I/O management using continuity counters and a prefetch scheme enables fast address translation. Experimental results show that the proposed address translation mechanism for CFTL provides better performance in address translation and memory space usage than the well-known NAND FTL (NFTL) and adaptive FTL (AFTL).

  • PDF

A Memory Mapping Technique to Reduce Data Retrieval Cost in the Storage Consisting of Multi Memories (다중 메모리로 구성된 저장장치에서 데이터 탐색 비용을 줄이기 위한 메모리 매핑 기법)

  • Hyun-Seob Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.19-24
    • /
    • 2023
  • Recently, with the recent rapid development of memory technology, various types of memory are developed and are used to improve processing speed in data management systems. In particular, NAND flash memory is used as a main media for storing data in memory-based storage devices because it has a nonvolatile characteristic that it can maintain data even at the power off state. However, since the recently studied memory-based storage device consists of various types of memory such as MRAM and PRAM as well as NAND flash memory, research on memory management technology is needed to improve data processing performance and efficiency of media in a storage system composed of different types of memories. In this paper, we propose a memory mapping scheme thought technique for efficiently managing data in the storage device composed of various memories for data management. The proposed idea is a method of managing different memories using a single mapping table. This method can unify the address scheme of data and reduce the search cost of data stored in different memories for data tiering.

Wear Leveling Technique using Bit Array and Bit Set Threshold for Flash Memory

  • Kim, Seon Hwan;Kwak, Jong Wook;Park, Chang-Hyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.11
    • /
    • pp.1-8
    • /
    • 2015
  • Flash memory has advantages in that it is fast access speed, low-power, and low-price. Therefore, they are widely used in electronics industry sectors. However, the flash memory has weak points, which are the limited number of erase operations and non-in-place update problem. To overcome the limited number of erase operations, many wear leveling techniques are studied. They use many tables storing information such as erase count of blocks, hot and cold block indicators, reference count of pages, and so on. These tables occupy some space of main memory for the wear leveling techniques. Accordingly, they are not appropriate for low-power devices limited main memory. In order to resolve it, a wear leveling technique using bit array and Bit Set Threshold (BST) for flash memory. The proposing technique reduces the used space of main memory using a bit array table, which saves the history of block erase operations. To enhance accuracy of cold block information, we use BST, which is calculated by using the number of invalid pages of the blocks in a one-to-many mode, where one bit is related to many blocks. The performance results illustrate that the proposed wear leveling technique improve life time of flash memory to about 6%, compared with previous wear leveling techniques using a bit array table in our experiment.

Flash Memory File System for Mobile Devices (이동 기기를 위한 플래시 메모리 파일 시스템)

  • Bae Young Hyun;Choi Jongmoo;Lee Donghee;Noh Sam H.;Min Sang Lyul
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.4
    • /
    • pp.368-380
    • /
    • 2005
  • File systems for flash memory that is widely used as a storage device for mobile devices should provide not only high-performance data reads and writes but also a guarantee on the data integrity even on a power failure. In this paper, we explain the design and implementation of a file system for flash memory that considers flash memory's physical characteristics and the data layout in the file system to give an optimized write performance. This file system guarantees the reliability against various system failures including a power failure by using the transaction concept in write processing. In addition, the file system minimizes the memory usage by using a simple static mapping. In the paper, we also describe the implementation of the file system and compare its performance with other existing flash memory ille systems.

An Embedded Text Index System for Mass Flash Memory (대용량 플래시 메모리를 위한 임베디드 텍스트 인덱스 시스템)

  • Yun, Sang-Hun;Cho, Haeng-Rae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.6
    • /
    • pp.1-10
    • /
    • 2009
  • Flash memory has the advantages of nonvolatile, low power consumption, light weight, and high endurance. This enables the flash memory to be utilized as a storage of mobile computing device such as PMP(Portable Multimedia Player). Potable device with a mass flash memory can store various multimedia data such as video, audio, or image. Typical index systems for mobile computer are inefficient to search a form of text like lyric or title. In this paper, we propose a new text index system, named EMTEX(Embedded Text Index). EMTEX has the following salient features. First, it uses a compression algorithm for embedded system. Second, if a new insert or delete operation is executed on the base table. EMTEX updates the text index immediately. Third, EMTEX considers the characteristics of flash memory to design insert, delete, and rebuild operations on the text index. Finally, EMTEX is executed as an upper layer of DBMS. Therefore, it is independent of the underlying DBMS. We evaluate the performance of EMTEX. The Experiment results show that EMTEX can outperform th conventional index systems such as Oracle Text and FT3.