• 제목/요약/키워드: flash boiling spray

검색결과 16건 처리시간 0.023초

2성분 혼합연료를 이용한 감압비등 분무특성에 관한 연구 (A Study on the Spray Characteristics of Flash Boiling Using Two Component Mixing Fuel)

  • 명광재;윤준규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권4호
    • /
    • pp.451-458
    • /
    • 2009
  • This experimental study was conducted to investigate macroscopic characteristics of the flash boiling spray with tow component mixing fuel. Homogeneous Charge Compression Ignition (HCCI) is a newer combustion method for internal combustion engines to reduce nitrogen oxide and particulate matter simultaneously. But it is difficult to put this combustion method to practical use in an engine because of such problems as instability of combustion in low load operating conditions and knocking in high load operating conditions. In HCCI, combustion characteristics and exhaust emissions depend on conditions of air/fuel mixture and chemical reactions of fuel molecules. The fuel design approach is achieved by mixing two components which differ in properties such as density, viscosity, volatility, ignitability and so on. We plan to apply the fuel design approach to HCCI combustion generated in a real engine, and examine the possibility of mixture formation control using the flash boiling spray. Spray characteristics of two component fuel with a flash boiling phenomenon was investigated using Shlieren and Mie scattering photography. Test fuel was injected into a constant volume vessel at ambient conditions imitated injection timing BTDC of a real engine. As a result, it was found that a flash boiling phenomenon greatly changed spray structure, especially in the conditions of lower temperature and density. Therefore, availability of mixture formation control using flash boiling spray was suggested.

Modeling of Atomization Under Flash Boiling Conditions

  • Zeng, Yangbing;Lee, Chia-Fon
    • 한국연소학회지
    • /
    • 제7권1호
    • /
    • pp.44-51
    • /
    • 2002
  • This paper presents an atomization model for sprays under flash boiling conditions. The atomization is represented by the secondary breakup of a bubble/droplet system, and the breakup is considered as the results of two competing mechanisms, aerodynamic force and bubble growth. The model was applied to predict the atomization of a hollow-cone spray from pintle injector under flash boiling conditions. In the regimes this study considered, sprays are atomized by bubble growth, which produces smaller SMD#s than aerodynamic forces alone. With decreasing ambient pressures, the spray thickness, fuel vaporization rate and vapor radial penetration increases, and the drop size decreases. With increasing the fuel and ambient temperatures to some extent, the effect of flash boiling and air entrainment completely change the spray pattern.

  • PDF

인젝터 압력이 단공노즐 감압비등 분무에 미치는 영향 (Effect of Injection Pressure on the Flash Boiling Spray from Simple Orifice Nozzle)

  • 이현창;차현우;강동현
    • 한국분무공학회지
    • /
    • 제27권1호
    • /
    • pp.42-49
    • /
    • 2022
  • Flash boiling occurs in a couple of modern engineering systems and understanding its mechanism is important. In this experimental study, discharge coefficient of flash boiling spray from simple orifice nozzle was measured, and backlight imaging was acquired at injection pressure to 6.0 bar and temperature to 163℃ for the purpose. Pressurized water by pump was used for working fluid and was heated by electric heater and ejected through simple orifice nozzle diameter of 0.5 mm. High speed camera with long distance microscope was used for backlight imaging in two FoV having magnification of 3.3 and 0.64. The decrease of discharge coefficient according to degree of superheating and evolution of flash boiling spray imaged at various pressure and temperature were explained by the pressure field inside the injector.

액상부탄 분사시스템의 수치시뮬레이션 및 분무특성 예측 (Simulation of Fuel Injection System and Model of Spray Behavior in Liquefied Butane)

  • 김종현;구자예
    • 한국분무공학회지
    • /
    • 제3권2호
    • /
    • pp.24-33
    • /
    • 1998
  • The characteristics of liquefied butane spray are expected to be different from conventional diesel fuel spray, because a kind of flash boiling spray is expected when the back pressure is below the saturation vapor pressure of the butane(0.23MPa at $25^{\circ}C$). An accumulator type pintle injector and its fuel delivery system has been simulated in ruder to give injection pressure, needle lift and rate of fuel injected. The governing equation were solved by finite difference metho. The injection duration was controlled by solenoid valve. Spray behaviors such as a transient spray tip penetration, spray angle and SMD were calculated based on the empirical correlations in case that the back pressure is both above the vapor pressure of the butane and below that of butane. When the back preassure is below the vapor pressure of the fuel, conventional correlation is modified to represent the effect of flash boiling.

  • PDF

감압비등을 이용한 혼합연료의 분무제어에 관한 연구 (Study on the Spray Control of Mixed Fuel Using Flash Boiling)

  • 명광재;윤준규
    • 대한기계학회논문집B
    • /
    • 제34권11호
    • /
    • pp.1005-1013
    • /
    • 2010
  • 본 연구는 HCCI 엔진의 운전조건을 고려한 혼합연료의 감압비등 분무제어방법을 평가하기 위하여 수행하였다. 2상영역이 존재하는 혼합연료는 고비점성분의 증발촉진과 함께 연료분무의 급격한 증발을 유도할 수 있는 감압비등분무를 이용함으로써 저온 및 저밀도장에서 혼합기형성과정의 제어가 가능하다. HCCI 엔진은 이러한 분위기조건에서 연료를 조기분사하기 때문에 착화성이 높은 경유와 휘발성이 높은 가솔린성분으로 함유한 혼합연료의 감압비등현상을 이용함으로써 액체연료의 분열, 미립화와 같은 물리적 제어 및 착화연소에 의한 화학적 제어를 실현할 수 있다. 본 연구는 혼합연료의 성분과 몰분율을 주요변수로 설정하여 정적용기 내에 분사된 연료분무의 감압비등현상을 슐리렌 화상 및 Mie 산란광을 촬영한 후, 화상처리과정을 통하여 이루어졌다. 그 결과로 감압비등현상은 비교적 저온 및 저밀도장에서 분무구조가 크게 변화함을 알 수 있었으며, 조기 연료분사시기에서 감압비등분무를 이용한 혼합기형성을 제어함으로써 HCCI 연소에 적용이 가능할 것으로 분석하였다.

감압 비등에 의한 상압 환경에서의 압력식 와류 노즐의 분무 특성 (Spray Characteristics of a Pressure Swirl Nozzle for an Ambient Condition due to Flash Boiling)

  • 김원호;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.686-691
    • /
    • 2010
  • Flash boiling takes place when the thermodynamic state of the liquid deviates from its saturation limit over which the liquid temperature exceeds by a certain degree of superheat. The liquid jet introduced into the lower pressure zone than the liquid saturation pressure experiences a sequence of the atomization and disintegrated into numerous faster and smaller droplets. In the present study spray characteristics for a flash swirl spray were experimentally investigated. Injectant temperature is raised by a high frequency dielectric heating method and local spray characteristics are instantly measured by Global Sizing Velocimetry (GSV, TSI Inc.). Dependence of dimensionless superheat degree and injection pressure on total and local SMDs and mean droplet size is quantitatively examined. The flash swirl spray has the relation in the injection pressure and nozzle diameter in order to determine the spray quality, including the dimensionless superheat degree. Small droplets occur in the void core and local droplet size distributions largely depend on the dimensionless superheat degree and the injection pressure.

  • PDF

머신러닝을 이용한 다공형 GDI 인젝터의 플래시 보일링 분무 예측 모델 개발 (Development of Flash Boiling Spray Prediction Model of Multi-hole GDI Injector Using Machine Learning)

  • 상몽소;신달호;;박수한
    • 한국분무공학회지
    • /
    • 제27권2호
    • /
    • pp.57-65
    • /
    • 2022
  • The purpose of this study is to use machine learning to build a model capable of predicting the flash boiling spray characteristics. In this study, the flash boiling spray was visualized using Shadowgraph visualization technology, and then the spray image was processed with MATLAB to obtain quantitative data of spray characteristics. The experimental conditions were used as input, and the spray characteristics were used as output to train the machine learning model. For the machine learning model, the XGB (extreme gradient boosting) algorithm was used. Finally, the performance of machine learning model was evaluated using R2 and RMSE (root mean square error). In order to have enough data to train the machine learning model, this study used 12 injectors with different design parameters, and set various fuel temperatures and ambient pressures, resulting in about 12,000 data. By comparing the performance of the model with different amounts of training data, it was found that the number of training data must reach at least 7,000 before the model can show optimal performance. The model showed different prediction performances for different spray characteristics. Compared with the upstream spray angle and the downstream spray angle, the model had the best prediction performance for the spray tip penetration. In addition, the prediction performance of the model showed a relatively poor trend in the initial stage of injection and the final stage of injection. The model performance is expired to be further enhanced by optimizing the hyper-parameters input into the model.

시뮬레이션을 이용한 암모니아, 에탄올, 노말데케인 분무 특성 비교 (Comparison of spray characteristics for ammonia, ethanol, n-decane by using numerical simulation)

  • 이재진;염은섭
    • 한국가시화정보학회지
    • /
    • 제20권2호
    • /
    • pp.38-44
    • /
    • 2022
  • Due to increasingly strict emission regulations for carbon-based fuels in the shipping industry, there is a significant motivation to investigate the alternative fuel. Ammonia is one of the attractive alternative fuels as a carbon-free fuel. Since ammonia has different properties such as high vapor pressure and low boiling point compared to conventional fuels, further research into ammonia spray behavior is important. In this work, the spray characteristics of ammonia and other fluids (ethanol, n-decane) were compared by using numerical simulation. The results show that the spray characteristics of ammonia differs from those of the others due to the occurrence of flash boiling. The narrow-dispersed spray with accelerated velocity at the center have been observed for ammonia. It is also found that droplets of ammonia achieve smaller diameter with more uniform distribution, leading to better atomization behavior compared to the others.

액상부탄 간헐분무의 액적 크기 및 속도 측정과 최적 확률분포 연구 (Measurements of Droplet Sizes and Velocities with Optimum Probability Density Function in a Transient Liquefied Butane Spray)

  • 김종현;김재욱;구자예
    • 한국분무공학회지
    • /
    • 제5권1호
    • /
    • pp.30-40
    • /
    • 2000
  • The characteristics of liquefied butane spray are expected to be different from conventional diesel fuel spray, because a kind of flash boiling spray is expected when the back pressure is below the saturated vapor pressure of the butane(0.23MPa at 298K). The ambient pressure was held at a pressure above(0.37MPa) and below(0.15MPa) the fuel vapor pressure. The axial velocities, radial velocities, and size distributions in butane sprays were measured with PDPA(Phase Doppler Particle Analyzer) system. The PDPA measurement showed a smaller SMD at the 0.15MPa chamber pressure, compared to the 0.37MPa case. Log-hyperbolic density function for the droplets size distribution can be fitted to the experimental results of a liquefied butane spray.

  • PDF

PDPA와 고속카메라에 의한 액상부탄 간헐분무 특성 연구 (The Characteristics of a Transient Liquefied Butane Spray using PDPA and High Speed Camera)

  • 윤준규;임종한;김종현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.466-474
    • /
    • 2004
  • The characteristics of liquefied butane spray are expected to be different from conventional diesel fuel spray, because a flash boiling spray is expected when the surround pressure is below the saturated vapor pressure of the butane(0.23MPa 98K). The axial velocities. radial velocities. and size distributions in butane sprays were measured with PDPA(Phase Doppler Particle Analyzer) system. Sprays were macroscopically observed by using the high speed camera in case that the surround pressure is 0.37MPa and 0.15MPa. respectively. Compared with the conventional spray. the reversed results were investigated when the surround pressure is below the saturated vapor pressure of the butane.