• 제목/요약/키워드: flapping-wing

검색결과 82건 처리시간 0.027초

A dragonfly inspired flapping wing actuated by electro active polymers

  • Mukherjee, Sujoy;Ganguli, Ranjan
    • Smart Structures and Systems
    • /
    • 제6권7호
    • /
    • pp.867-887
    • /
    • 2010
  • An energy-based variational approach is used for structural dynamic modeling of the IPMC (Ionic Polymer Metal Composites) flapping wing. Dynamic characteristics of the wing are analyzed using numerical simulations. Starting with the initial design, critical parameters which have influence on the performance of the wing are identified through parametric studies. An optimization study is performed to obtain improved flapping actuation of the IPMC wing. It is shown that the optimization algorithm leads to a flapping wing with dimensions similar to the dragonfly Aeshna Multicolor wing. An unsteady aerodynamic model based on modified strip theory is used to obtain the aerodynamic forces. It is found that the IPMC wing generates sufficient lift to support its own weight and carry a small payload. It is therefore a potential candidate for flapping wing of micro air vehicles.

The Effect of Folding Wing on Aerodynamics and Power Consumption of a Flapping Wing

  • Lee, Seunghee;Han, Cheolheui
    • International Journal of Aerospace System Engineering
    • /
    • 제3권2호
    • /
    • pp.26-30
    • /
    • 2016
  • Experimental study on the unsteady aerodynamics analysis and power consumption of a folding wing is accomplished using a wind tunnel testing. A folding wing model is fabricated and actuated using servo motors. The flapping wing consists of an inboard main wing and an outboard folding wing. The aerodynamic forces and consumed powers of the flapping wing are measured by changing the flapping and folding wings inside a low-speed wind tunnel. In order to calculate the aerodynamic forces, the measured forces are modified using static test data. It was found that the effect of the folding wing on the flapping wing's total lift is small but the effect of the folding wing on the total thrust is larger than the main wing. The folding motion requires the extra use of the servo motor. Thus, the amount of the energy consumption increases when both the wings are actuated together. As the flight speed increases, the power consumption of the folding wing decreases which results in energy saving.

Lift Force Variation of Flapping Wing (날개짓 비행체의 양력 변위)

  • Hong, Young-Sun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • 제10권1호
    • /
    • pp.33-43
    • /
    • 2007
  • Using the more common conventional chordwise aerodynamic approach, flapping a flat plate wing with zero degree chordwise pitch angle of attack and no relative wind should not produce lift. However, in hover, with no forward relative velocity and zero degree chordwise pitch angle of attack, flapping flat plate wings does in fact produce lift. In the experiments peformed for this paper, the flapping motion is considered pure(downstroke and upstroke) with no flapping stroke plane inclination angle. No changes in chordwise pitch angle are made. The total force is measured using a force transducer and the net aerodynamic force is determined from this measured total force by subtracting the experimentally determined inertial contribution. These experiments were repeated at various flapping frequencies and for various wing planform sizes for flat plate wings. The trends in the aerodynamic lift variation found using a force transducer have nearly identical shape for various flapping frequencies and wing planform sizes.

Demonstration of Stable Vertical Takeoff of an Insect-Mimicking Flapping-Wing System (곤충 모방 날갯짓 비행체의 안정적인 수직 이륙 비행 구현)

  • Phan, Hoang-Vu;Truong, Quang-Tri;Nguyen, Quoc-Viet;Park, Hoon-Cheol;Byun, Do-Young;Goo, Nam-Seo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제18권2호
    • /
    • pp.76-80
    • /
    • 2012
  • This paper demonstrates how to implement inherent pitching stability in an insect-mimicking flapping-wing system for vertical takeoff. Design and fabrication of the insect-mimicking flapping-wing system is briefly described focusing on the recent modification. Force produced by the flapping-wing systems is estimated using the UBET (Unsteady Blade Element Theory) developed in the previous work. The estimation shows that the wing twist placed in the modified system can improve thrust production for about 10 %. The estimated thrust is compared with the measured thrust, which proves that the UBET provides fairly good estimations for the thrust produced by the flapping-wing systems. The vertical takeoff test shows that inherent pitching stability can be implemented in an insect-mimicking flapping-wing system by aligning the aerodynamic force center and center of gravity.

Aerodynamic Analysis of a Rectangular Wing in Flapping with Lead-Lag Motion using Unsteady VLM (직사각형 평판날개의 리드래그 운동이 조합된 날개짓에 대한 비정상 VLM 공력 해석)

  • Kim, Woo-Jin;Kim, Hark-Bong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • 제14권2호
    • /
    • pp.39-44
    • /
    • 2006
  • The unsteady vortex lattice method is used to model lead-lag in flapping motions of a rectangular flat plate wing. The results for plunging and pitching motions were compared with the limited experimental results available and other numerical methods. They show that the method is capable of simulating many of the features of complex flapping flight. The lift, thrust and propulsive efficiency of a rectangular flat plate wing have been calculated for various lead-lag motion and reduced frequency with an amplitude of flapping angle(20o). To describe a motion profile of wing tip such as elliptic, line and circle, the phase difference of flapping and lead-lag motion was changed. And the effects of the motion profile on the aerodynamic characteristics of the flapping wing are discussed by examination of their trends.

  • PDF

Numerical Investigation on the Flapping Wing Sound (플래핑 날개의 음향 특성에 대한 수치 연구)

  • Bae, Young-Min;Moon, Young-J.
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3209-3214
    • /
    • 2007
  • This study numerically investigates the unsteady flow and acoustic characteristics of a flapping wing using a hydrodynamic/acoustic splitting method. The Reynolds number based on the maximum translation velocity of the wing is Re=8800 and Mach number is M=0.0485. The flow around the flapping wing is predicted by solving the two-dimensional incompressible Navier-Stokes equations (INS) and the acoustic field is calculated by the linearized perturbed compressible equations (LPCE), both solved in moving coordinates. Numerical results show that the hovering sound is largely generated by wing translation (transverse and tangential), which have different dipole sources with different mechanisms. As a distinctive feature of the flapping sound, it is also shown that the dominant frequency varies around the wing.

  • PDF

A comparative study of dragonfly inspired flapping wings actuated by single crystal piezoceramic

  • Mukherjee, Sujoy;Ganguli, Ranjan
    • Smart Structures and Systems
    • /
    • 제10권1호
    • /
    • pp.67-87
    • /
    • 2012
  • A dragonfly inspired flapping wing is investigated in this paper. The flapping wing is actuated from the root by a PZT-5H and PZN-7%PT single crystal unimorph in the piezofan configuration. The non-linear governing equations of motion of the smart flapping wing are obtained using the Hamilton's principle. These equations are then discretized using the Galerkin method and solved using the method of multiple scales. Dynamic characteristics of smart flapping wings having the same size as the actual wings of three different dragonfly species Aeshna Multicolor, Anax Parthenope Julius and Sympetrum Frequens are analyzed using numerical simulations. An unsteady aerodynamic model is used to obtain the aerodynamic forces. Finally, a comparative study of performances of three piezoelectrically actuated flapping wings is performed. The numerical results in this paper show that use of PZN-7%PT single crystal piezoceramic can lead to considerable amount of wing weight reduction and increase of lift and thrust force compared to PZT-5H material. It is also shown that dragonfly inspired smart flapping wings actuated by single crystal piezoceramic are a viable contender for insect scale flapping wing micro air vehicles.

Design.Manufacture on X-wing type flapping vehicle (X-wing type 날개짓 비행체의 설계.개발)

  • Yoon, Kwang-Joon;Park, Joon-Hyuk
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1437-1440
    • /
    • 2008
  • This research describes about designing and manufacturing X-wing type flapping micro aerial vehicle which intends to improve the performance of one-pair wing flapping vehicle with innovated design. This design, X-wing as we call, was introduced for some time ago from many laboratories but still there hasn’t any reports dealing on its theoretical or numerical analysis. By manufacturing the X-wing with our own design and succeeding its flight test will give us the general idea on X-wing which may guide us to conduct the numerical and experimental analysis later on. We focused to design the X-wing and introduce some conceptual theories about its characteristics on this report.

  • PDF

Design and evaluation of LIPCA-actuated flapping device (LIPCA 작동기로 구동되는 날갯짓 기구의 설계 및 성능평가)

  • Lee, Seung-Sik;Syaifuddin, Moh;Park, Hoon-Cheol;Yoon, Kwang-Joon;Goo, Nam-Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제33권12호
    • /
    • pp.48-53
    • /
    • 2005
  • In this paper, we present our recent progress in the LIPCA (Lightweight Piezo-Composite Actuator) application for actuation of a flapping wing device. The flapping device uses linkage system that can amplify the actuation displacement of LIPCA. The feathering mechanism is also designed and implemented such that the wing can rotate during flapping. The natural flapping-frequency of the device was about 9 Hz, where the maximum flapping angle was achieved. The flapping test under 4 Hz to 15 Hz flapping frequency was performed to investigate the flapping performance by measuring the produced lift and thrust. Maximum lift and thrust were produced when the flapping device was actuated at about the natural flapping-frequency.

Insect-mimicking Flapping Device Actuated by a Piezoceramic Actuator LIPCA (압전작동기 LIPCA로 구동하는 곤충 모방 날갯짓 기구)

  • Park, Hoon-Cheol;Moh, Syaifuddin;Yoon, Kwang-Joon;Goo, Nam-Seo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.719-722
    • /
    • 2005
  • In this paper, we present out recent progress in the LIPCA (Lightweight Piezo-Composite Actuator) application for actuation of a flapping wing device. The flapping device uses linkage system that can amplify the actuation displacement of LIPCA. The feathering mechanism is also designed and implemented such that the wing can rotate during flapping. The natural flapping-frequency of the device was about 9 Hz, where the maximum flapping angle was achieved. The flapping test under 5 Hz to 15 Hz flapping frequency was performed to investigate the flapping performance by measuring the produced lift and thrust. Maximum lift and thrust were produced when the flapping device was actuated at about the natural flapping-frequency.

  • PDF