• Title/Summary/Keyword: flapping wing

Search Result 82, Processing Time 0.029 seconds

Parametric Study on Wing Design of Insect-mimicking Aerial Vehicle with Biplane Configuration (겹 날개를 사용하는 곤충 모방 비행체의 날개 형상에 대한 파라메트릭 연구)

  • Park, Heetae;Kim, Dongmin;Mo, Hyemin;Kim, Lamsu;Lee, Byoungju;Kim, Inrae;Kim, Seungkeun;Ryi, Jaeha;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.712-722
    • /
    • 2018
  • This paper conducts parametric studies on flapping wing design, one of the most important design parameters of insect-mimicking aerial vehicles. Experimental study on wing shape was done through comparison and analysis of thrust, pitching moment, power consumption, and thrust-to-power ratio. A two-axis balance and hall sensor measure force and moment, and flapping frequency, respectively. Wing configuration is biplane configuration which can develop clap and fling effect. A reference wing shape is a simplified dragonfly's wing and studies on aspect ratio and wing area were implemented. As a result, thrust, pitching moment, and power consumption tend to increase as aspect ratio and area increase. Also, it is found that the flapping mechanism was not normally operated when the main wing has an aspect ratio or area more than each certain value. Finally, the wing shape is determined by comparing thrust-to-power ratio of all wings satisfying the required minimum thrust. However, the stability is not secured due to moment generated by disaccord between thrust line and center of gravity. To cope with this, aerodynamic dampers are used at the top and bottom of the fuselage; then, indoor flight test was attempted for indirect performance verification of the parametric study of the main wing.

A Study on Aerodynamic Characteristics of Flapping Motion (플래핑 운동의 공기역학적 특성에 관한 연구)

  • Kim Yoon-Joo;Oh Hyun-Taek;Chung Jin Taek;Choi Hang-Cheol;Kim Kwang-Ho
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.2
    • /
    • pp.63-70
    • /
    • 2005
  • Birds and insects flap their wings to fly in the air and they can change their wing motions to do steering and maneuvering. Therefore, we created various wing motions with the parameters which affected flapping motion and evaluated the aerodynamic characteristics about those cases in this study. As the wing rotational velocity was fast and the rotational timing was advanced, the measured aerodynamic forces showed drastic increase near the end of stroke. The mean lift coefficient was increased until angle of attack of $50^{\circ}$ and showed the maximum value of 1.0. The maximum mean lift to drag ratio took place at angle of attack of $20^{\circ}$. Flow fields were also visualized around the wing using particle image velocimetry (PIV). From the flow visualization, leading-edge vortex was not shed at mid-stroke until angle of attack of $50^{\circ}$. But it was begun to shed at angle of attack of $60^{\circ}$.

  • PDF

Characteristic of an insect-mimicking flapping device actuated by a piezoceramic actuator (압축하중을 받는 압전 작동기로 구동하는 곤충모방 날갯짓 기구의 특성)

  • Park, Hoon-Cheol;Quoc, Viet Nguyen;Byun, Do-Young;Goo, Nam-Seo;Yoon, Kwang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1063-1071
    • /
    • 2008
  • A piezoceramic unimoph actuator can produce a relatively larger actuation force and actuation displacement when a proper compressive load is applied during operation, because the compressive stress causes material nonlinear behavior in the piezoceramic layer and triggers mechanical buckling. In this paper, we examined effects of the actuator under compression on the flapping angle and aerodynamic force generation capability. Effects of wing shape and passive wing rotation angle on the aerodynamic force production were also investigated. The average vertical force acquired by a 2D CFD simulation for an artificial wing showed a good agreement with the measured one by the experiment.

An Experimental Study on Lift Force Generation Resulting from Spanwise Flow in Flapping Wings

  • Hong, Young-Sun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.86-103
    • /
    • 2006
  • Using a combination of force transducer measurement to quantify net lift force, high frame rate camera to quantify and subtract inertial contributions, and Digital Particle Image Velocimetry (DPIV) to calculate aerodynamic contributions in the spanwise plane, the contribution of spanwise flow to the generation of lift force in wings undergoing a pure flapping motion in hover is shown as a function of flapping angle throughout the flapping cycle. These experiments were repeated at various flapping frequencies and for various wing planform sizes for flat plate and span wise cambered wings. Despite the previous identification of the importance of span wise fluid structures in the generation of lift force in flapping wings throughout the existing body of literature, the direct contribution of spanwise flow to lift force generated has not previously been quantified. Therefore, in the same manner as commonly applied to investigate the chordwise lift distribution across an airfoil in flapping wings, spanwise flow due to bulk flow and rotational fluid dynamic mechanisms will be investigated to validate the existence of a direct component of the lift force originating from the flapping motion in the spanwise plane instead.

The Effect of Aspect Ratio on the Aerodynamic Characteristics of an Insect-based Flapping Wing (곤충 모방형 플래핑 날개의 공력특성에 관한 가로세로비 효과)

  • Han, Jong-Seob;Chang, Jo-Won;Jeon, Chang-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.662-669
    • /
    • 2012
  • The effect of aspect ratio (AR) on the aerodynamic characteristics of a flapping wing was examined to analyze the design parameters of an insect-based MAV. The experimental model constructed with 4-bar linkages was operated in a water tank with the condition of a low Reynolds number. A water-proof micro-force load cell was fabricated and installed at the root of the wing which is made of a plexiglas. The wing shapes were based on the planform of a fruit fly wing. The ARs selected were 1.87, 3.74 and 7.48 and the Reynolds number was fixed at $10^4$. For AR=1.87 and 3.74, distinct lift peaks which indicate unsteady effects such as 'wake-capture' were observed at the moment of the start of the wing-stroke. However, for AR=7.48, no unsteady effects were observed. These phenomena were also observed in the delayed rotation case. The results indicate that a larger AR provides better aerodynamic performance for the insect-based flapping wing which can be applied in MAV designs.

Basic Physiological Research on the Wing Flapping of the Sweet Potato Hawkmoth Using Multimedia

  • Nakajima, Isao;Yagi, Yukako
    • Journal of Multimedia Information System
    • /
    • v.7 no.2
    • /
    • pp.189-196
    • /
    • 2020
  • We have developed a device for recording biological data by inserting three electrodes and a needle with an angular velocity sensor into the moth for the purpose of measuring the electromyogram of the flapping and the corresponding lift force. With this measurement, it is possible to evaluate the moth-physiological function of moths, and the amount of pesticides that insects are exposed to (currently LD50-based standards), especially the amount of chronic low-concentration exposure, can be reduced the dose. We measured and recorded 2-channel electromyography (EMG) and angular velocity corresponding to pitch angle (pitch-like angle) associated with wing flapping for 100 sweet potato hawkmoths (50 females and 50 males) with the animals suspended and constrained in air. Overall, the angular velocity and amplitude of EMG signals demonstrated high correlation, with a correlation coefficient of R = 0.792. In contrast, the results of analysis performed on the peak-to-peak (PP) EMG intervals, which correspond to the RR intervals of ECG signals, indicated a correlation between ΔF fluctuation and angular velocity of R = 0.379. Thus, the accuracy of the regression curve was relatively poor. Using a DC amplification circuit without capacitive coupling as the EMG amplification circuit, we confirmed that the baseline changes at the gear change point of wing flapping. The following formula gives the lift provided by the wing: angular velocity × thoracic weight - air resistance - (eddy resistance due to turbulence). In future studies, we plan to attach a micro radio transmitter to the moths to gather data on potential energy, kinetic energy, and displacement during free flight for analysis. Such physiological functional evaluations of moths may alleviate damage to insect health due to repeated exposure to multiple agrochemicals and may lead to significant changes in the toxicity standards, which are currently based on LD50 values.

Linear Quadratic Controller Design of Insect-Mimicking Flapping Micro Aerial Vehicle (곤충모방 날갯짓 비행체의 LQ 제어기 설계)

  • Kim, Sungkeun;Kim, Inrae;Kim, Seungkeun;Suk, Jinyoung
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.450-458
    • /
    • 2017
  • This paper presents dynamic modelling and simulation study on attitude/altitude control of an insect-mimicking flapping micro aerial vehicle during hovering. Mathematical modelling consists of three parts: simplified flapping kinematics, flapping-wing aerodynamics, and six degree of freedom dynamics. Attitude stabilization is accomplished through linear quadratic regulator based on the linearized model of the time-varying nonlinear system, and altitude control is designed in the outer loop using PID control. The performance of the proposed controller is verified through numerical simulation where attitude stabilization and altitude control is done for hovering. In addition, it is confirmed that the attitude channel by periodic control is marginally stable against periodic pitching moment caused by flapping.

Improvement of Flapping Air Vehicle by Using Axiomatic Design (공리적 설계를 이용한 Flapping 비행체의 성능 개선)

  • 성호석;차성운;이경수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.684-688
    • /
    • 1997
  • The human species has been able to fly for about a century - with the help of aircraft of various kinds. Recently. air vehicles which are like an insect or a bird with flapping wings have been appeared, although many of them are experimental flight vehicle. However, the rubber-powered flapping vehicle is put to practical use such as toy, which flies for some seconds. In this paper, we analyze and evaluate above the rubber-powered flight vehicle using axiomatic design and will present new four flapping wing model.

  • PDF

Thrust Enhancement through a Tandem Mode of Flapping Wing in Micro Flow (마이크로 유동에서 플래핑 날개의 Tandem 모드를 이용한 추력향상에 대한 연구)

  • Jang, Sung-Min;Maeng, Joo-Sung;An, Sang-Joon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.605-611
    • /
    • 2011
  • In this study, based on previous studies, the thrust generated by using flapping tandem wings is examined. We studied on the relationship between the parameters for characterizing oscillatory tandem wings (namely, the Strouhal number and Reynolds number) for thrust generation in micro flow regime. At each Reynolds number, Strouhal number, heaving amplitude, distance between tandem wings, and phase difference are varied and the flapping motions of tandem mode are calculated to find the optimum conditions for generating thrust. As a result, comparing with a single flapping mode, we found that the minimum Strouhal number for generating thrust is shifted down up to approximately 25% when the tandem flapping mode is applied.

Aerodynamic Characteristics of an Insect-type Flapping Wings (곤충 모방 플래핑 날개의 공력 특성)

  • Han, Jong-Seob;Chang, Jo-Won;Choi, Hae-Cheon;Kang, In-Mo;Kim, Sun-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.311-314
    • /
    • 2007
  • Aerodynamic characteristics of an insect-type flapping wings were carried out to obtain the design parameters of Micro Hovering Air Vehicle. A pair of wing model was scaled up about 200 times and applied two pairs of 4-bar linkage mechanism to mimic the wing motion of a fruit fly(Drosophila). To verify the Weis-Fogh mechanism, a pair of wings revolved on the 'Delayed Rotation'. Lift and drag were measured in conditions of the Reynolds number based on wing tip velocity of about 1,200 and the maximum angle of attack of 40$40^{\circ}$. Inertia forces of a wing model were also measured by using a 99.98% vacuum chamber and subtracted on measured data in air. In the present study, high lift effect of Weis-Fogh mechanism was appeared in the middle of upstroke motion.

  • PDF