• Title/Summary/Keyword: flanking region

Search Result 182, Processing Time 0.024 seconds

Association between Polymorphisms of Lipoprotein Lipase Gene and Chicken Fat Deposition

  • Liu, Rui;Wang, Yachun;Sun, Dongxiao;Yu, Ying;Zhang, Yuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.10
    • /
    • pp.1409-1414
    • /
    • 2006
  • The objective of this study was to screen single nucleotide polymorphisms (SNPs) of the chicken lipoprotein lipase gene (LPL), using 545 F1 hybrids developed from $4{\times}4$ diallel crossing of four chicken breeds, and to analyze the associations between polymorphisms of the LPL and chicken fat deposition traits. PCR-SSCP was used to detect SNPs in LPL. Fifteen sets of primers were designed to amplify DNA fragments covering the 5'flanking and coding regions of LPL. It showed that there existed 5 polymorphic loci in the 5'flanking region and coding region, respectively. Association analysis was carried out between 10 polymorphic loci and intermuscular fat width, abdominal fat weight, and thickness of subcutaneous fat using ANCOVA, respectively. The results indicated that, in the 5'flanking region, the loci d and e significantly affected thickness of subcutaneous fat (p<0.05), abdominal fat weight (p<0.01) and subcutaneous fat (p<0.05), while in the coding region, synonymous mutation in exon 8 was significantly associated with intermuscular fat width (p<0.05), however, the non-synonymous mutations in exon 7 and exon 9 did not show statistically significant effects on fat deposition traits in this study.

Function identification of bovine Nramp1 promoter and intron 1

  • Hao, Linlin;Zhang, Libo;Li, Mingtang;Nan, Wang;Liu, Songcai;Zhong, Jifeng
    • Animal cells and systems
    • /
    • v.15 no.3
    • /
    • pp.227-233
    • /
    • 2011
  • The Nramp1/Slc11a1 locus encodes a proton-coupled divalent cation transporter, expressed in late endosomes/lysosomes of macrophages, that constitutes a component of the innate immune response to combat intracellular pathogens and it was shown to play an important role in regulating inherent immunity. The previously identified Z-DNA forming polymorphic repeat(GT)n in the promoter region of the human Nramp1 gene does act as a functional polymorphism influencing gene expression. Research has shown that INF-${\gamma}$, TNF-${\alpha}$, IL-$1{\beta}$ and bacteria LPS increase the level of Nramp1 expression. However, the molecular mechanism for Nramp1 gene regulation is unclear. In this research, bovine Nramp1 5'-flanking region (-1748~+769) was cloned and analyzed by bioinformatics. Then to find the core promoter and the cis-acting elements, deletion analysis of promoter was performed using a set of luciferase reporter gene constructs containing successive deletions of the bovine Nramp1 5'-flanking regions. Promoter activity analysis by the dual luciferase reporter assay system showed that the core promoter of Nramp1 was located at +58~-89 bp. Some positive regulatory elements are located at -89~-205 bp and -278~-1495 bp. And the repressor elements were in region -205~-278 bp, intron1 and -1495~-1748 bp. LPS-responsive regions were located at -1495~-1748 bp and -278~-205 bp. The present study provides an initial effort to explore the molecular mechanism of transcriptional activation of the bovine Nramp1 gene and should facilitate further studies to decode the complex regulatory process and for molecular breeding for disease resistance in bovines.

Rapid and Unequivocal Identification Method for Event-specific Detection of Transgene Zygosity in Genetically Modified Chili Pepper

  • Kang, Seung-Won;Lee, Chul-Hee;Seo, Sang-Gyu;Han, Bal-Kum;Choi, Hyung-Seok;Kim, Sun-Hyung;Harn, Chee-Hark;Lee, Gung-Pyo
    • Horticultural Science & Technology
    • /
    • v.29 no.2
    • /
    • pp.123-129
    • /
    • 2011
  • To identify unintended vertical gene-transfer rates from the developed transgenic plants, rapid and unequivocal techniques are needed to identify event-specific markers based on flanking sequences around the transgene and to distinguish zygosity such as homo- and hetero-zygosity. To facilitate evaluation of zygosity, a polymerase chain reaction technique was used to analyze a transgenic pepper line B20 (homozygote), P915 wild type (null zygote), and their F1 hybrids, which were used as transgene contaminated plants. First, we sequenced the 3'-flanking region of the T-DNA (1,277 bp) in the transgenic pepper event B20. Based on sequence information for the 3'- and 5'-flanking region of T-DNA provided in a previous study, a primer pair was designed to amplify full length T-DNA in B20. We successfully amplified the full length T-DNA containing 986 bp from the flanking regions of B20. In addition, a 1,040 bp PCR product, which was where the T-DNA was inserted, was amplified from P915. Finally, both full length T-DNA and the 1,040 bp fragment were simultaneously amplified in the F1 hybrids; P915 ${\times}$ B20, Pungchon ${\times}$ B20, Gumtap ${\times}$ B20. In the present study, we were able to identify zygosity among homozygous transgenic event B20, its wild type P915, and hemizygous F1 hybrids. Therefore, this novel zygosity identification technique, which is based on PCR, can be effectively used to examine gene flow for transgenic pepper event B20.

Repetitive Homologous Sequences in Flanking Region of Gametophytic Self-Incompatibility Allele in Lycopersicon peruvianum

  • Chung, II-Kyung
    • BMB Reports
    • /
    • v.30 no.1
    • /
    • pp.18-20
    • /
    • 1997
  • Lycopersicon peruvianum shows a gametophytic self-incompatibility (GSI). GSI is controlled by a single locus (S locus) with multiple alleles. S ribonucleases encoded in S alleles cosegregate with their phenotypes of GSI in genetic cross. To understand the genetic role of S allele in L peruvianum, two large genomic fragments isolated previously were analyzed with total genomic DNAs from several tomato lines generated by cross-pollination. Southern blot analysis with the S allele fragments as probes revealed that the flanking region of S allele contained the highly homologous regions. It is speculated that they may play an important role to prevent genetic cross by self-pollination.

  • PDF

Isolation of an actin promoter for strong expression of transgenes in the orchid genus Dendrobium

  • Koo, Ja Choon
    • Journal of Plant Biotechnology
    • /
    • v.40 no.1
    • /
    • pp.27-36
    • /
    • 2013
  • We isolated and functionally characterized a Dendrobium Actin1 (DmACT1) promoter that drives strong gene expression in the orchid genus Dendrobium. A genomic fragment containing the region 3227 bp upstream of the coding region of DmACT1 was obtained by inverse PCR. Detailed comparison of the full-length cDNA and genomic sequences revealed that DmACT1 has a 1374 bp first intron in the 5' UTR. However, the 5' flanking sequences upstream of the coding region showed no obvious sequence similarities compared to those of known promoters, including plant actin promoters. Serial deletion constructs of the 5' flanking region from the translation initiation codon were fused to the coding sequence of a GUS/luciferase fusion reporter to identify the regulatory elements necessary for promoter activity. Transient assays in the flowers of Dendrobium revealed that the 5' UTR-intron greatly enhanced promoter activity. Moreover, the DmACT1 promoter with its 5' UTR-intron yielded approximately 10-fold higher reporter activity than the rice Act1 promoter-intron. Our data suggest that the DmACT1 promoter with its 5' UTR-intron is a useful tool for strong expression of transgenes in Dendrobium orchids.

Characterization of the porcine Nanog 5'-flanking region

  • Memon, Azra;Song, Ki-Duk;Lee, Woon Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.3
    • /
    • pp.449-456
    • /
    • 2018
  • Objective: Nanog, a homeodomain protein, has been investigated in humans and mice using embryonic stem cells (ESCs). Because of the limited availability of ESCs, few studies have reported the function and role of Nanog in porcine ESCs. Therefore, in this study, we investigated the location of the porcine Nanog chromosome and its basal promoter activity, which might have potential applications in development of ESCs specific marker as well as understanding its operating systems in the porcine. Methods: To characterize the porcine Nanog promoter, the 5'-flanking region of Nanog was isolated from cells of mini-pig ears. BLAST database search showed that there are two porcine Nanog genomic loci, chromosome 1 and 5, both of which contain an exon with a start codon. Deletion mutants from the 5'-flanking region of both loci were measured using the Dual-Luciferase Reporter Assay System, and a fluorescence marker, green fluorescence protein. Results: Promoter activity was detected in the sequences of chromosome 5, but not in those of chromosome 1. We identified the sequences from -99 to +194 that possessed promoter activity and contained transcription factor binding sites from deletion fragment analysis. Among the transcription factor binding sites, a Sp1 was found to play a crucial role in basal promoter activity, and point mutation of this site abolished its activity, confirming its role in promoter activity. Furthermore, gel shift analysis and chromatin immunoprecipitation analysis confirmed that Sp1 transcription factor binds to the Sp1 binding site in the porcine Nanog promoter. Taken together, these results show that Sp1 transcription factor is an essential element for porcine Nanog basal activity the same as in human and mouse. Conclusion: We showed that the porcine Nanog gene is located on porcine chromosome 5 and its basal transcriptional activity is controlled by Sp1 transcription factor.

Characterization of Bovine NANOG5'-flanking Region during Differentiation of Mouse Embryonic Stem Cells

  • Jang, Hye-Jeong;Park, Hwan Hee;Tran, Thi Thuy Linh;Lee, Hak-Kyo;Song, Ki-Duk;Lee, Woon Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.12
    • /
    • pp.1721-1728
    • /
    • 2015
  • Embryonic stem cells (ESCs) have been used as a powerful tool for research including gene manipulated animal models and the study of developmental gene regulation. Among the critical regulatory factors that maintain the pluripotency and self-renewal of undifferentiated ESCs, NANOG plays a very important role. Nevertheless, because pluripotency maintaining factors and specific markers for livestock ESCs have not yet been probed, few studies of the NANOG gene from domestic animals including bovine have been reported. Therefore, we chose mouse ESCs in order to understand and compare NANOG expression between bovine, human, and mouse during ESCs differentiation. We cloned a 600 bp (-420/+181) bovine NANOG 5'-flanking region, and tagged it with humanized recombinant green fluorescent protein (hrGFP) as a tracing reporter. Very high GFP expression for bovine NANOG promoter was observed in the mouse ESC line. GFP expression was monitored upon ESC differentiation and was gradually reduced along with differentiation toward neurons and adipocyte cells. Activity of bovine NANOG (-420/+181) promoter was compared with already known mouse and human NANOG promoters in mouse ESC and they were likely to show a similar pattern of regulation. In conclusion, bovine NANOG 5-flanking region functions in mouse ES cells and has characteristics similar to those of mouse and human. These results suggest that bovine gene function studied in mouse ES cells should be evaluated and extrapolated for application to characterization of bovine ES cells.

Sturcture of the Rice Glutelin Multigene Family and Its Expression (쌀 Glutelin 유전자군의 구조 및 발현조절)

  • 황영수
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.261-282
    • /
    • 1987
  • Plants store a significant amount of their nitrogen, sulfur and carbon reserves as storage proteins in seed tissues. The major proteins present in rice seeds are the glutelins. Glutelins are initially synthesized at 4-6 days postanthesis and deposited into protein bodies via Golgi apparatus. Based on nucleic acid sequences and Southern blot analysis, the three isolated glutelin genomic clones were representative members of three gene subfamilies each containing 5 to 8 copies. A comparison of DNA sequences displayed by relevant regions of these genomic clones showed that two subfamilies, represented by clones, Gt1 and Gt2, were closely, related and probably evolved by more recent gene duplication events. The 5' flanking and coding sequences of Gt1 and Gt2 displayed at least 87% homolgy. In contrast, Gt3 showed little or no homolgy in the 5' flanking sequences upstream of the putative CAAT boxes and exhibited significant divergence in all other portions of the gene. Conserved sequences in the 5' flanking regions of these genes were identified and discussed in light of their potential regulatory role. The derived primary sequences of all three glutelin genomic clones showed significant homology to the legume 11S storage proteins indicating a common gene origin. A comparison of the derived glutelin primary sequences showed that mutations were clustered in three peptide regions. One peptide region corresponded to the highly rautable hypervariable region of legume peptide region of legume 11S storage proteins, a potential target area for protein modification. Expression studies indicated that glutelin mRNA transcripts are differentially accumulated during endosperm development. Promoterss of Gt2 and Gt3 were functional as they direct transient expression of chloramphenicol acetyltransferase in cultured plant cell.

  • PDF