• Title/Summary/Keyword: flange part

Search Result 113, Processing Time 0.028 seconds

A study on the factors influencing at corner area material thickness changes of rectangular drawing products (각통드로잉 제품의 모서리 재료두께 변화에 영향을 미치는 인자에 대한 해석 연구)

  • Yun, Jae-Woong;Cho, Sang-Hee;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.22-29
    • /
    • 2020
  • The analysis was carried out using the press molding analysis program by applying six parameters such as material type change, material thickness, friction coefficient, rp, rd and blank holder pressure. As a result of CAE analysis of the soft material DC04 and the relatively hard material HX300LAD, the thickness of the punch R part of the soft material was significantly reduced. The flange portion is greatly increased in thickness in the hard material by the compression action. As a result of considering the deformation amount of 0.6mm, 1.0mm, 1.5mm according to the material thickness, the influence of the thickness is considered to be very small. In case of the material thickness of 0.6mm, the rate of change increases due to the deep drawing depth relative to the material thickness. The sizes of the punches R and die R have the greatest influence on the change in thickness of the material in drawing molding, the smaller the punch R, the thinner the edges of the product, The larger the R of the die, the greater the material thickness of the flange portion. As the coefficient of friction and the blank holder pressure increase, the frictional force of the flange portion increases, which increases the radial force in the drawing process and increases the thickness change of the flange portion.

A Study on the Development of Integral Forging Process for Cask of Nuclear Fuel (핵연료 용기의 일체형 단조공정 개발에 관한 연구)

  • Kim, M.W.;Cho, J.R.;Kim, D.K.;Kim, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.369-372
    • /
    • 2006
  • Monolithic forging of cask is required continuously. Body-base monolithic forging of cask has advantage of an economical manufacturing process and better reliability for nuclear applications. Through the finite element analysis and parametric study of design variables, those are die angle, groove length and flange thickness, the optimal dimensions of preform and die sets are determined in order to develop a suitable forging process for body-base monolithic forging. To verify the result of finite element analysis, the physical model of 1/30 scale of actual product using plasticine was carried out. The result of this experiment, deformed shapes were very similar to the finite element analysis. As a result of this work, the special piercing method was developed using blank material consisting of a flange, groove and squared part.

  • PDF

Study on Optimum Design for constitution part of Composite Insulator (Composite Insulator 구성 부품에 대한 최적 설계 연구)

  • Chung, Young-Soo;Choi, Sung-Man;Jang, Yoon-Ki;Lee, Dong-Woen;Kim, Jeong-Bae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1181-1186
    • /
    • 2008
  • Insulators which are used in the domestic electrical industries are mostly depended on importation from some advance countries. Even though insulators which are made of ceramic material have been mostly used domestically, the ratio of usage on composite insulators is recently being increased because of difficulties in manufacturing and high cost regarding ceramic stuffs. In this research, we are trying to develop the composite insulators which are very efficient in insulation regardless of the matter of weight. Even though the technique of manufacturing composite insulator are quite generalized worldwide at the moment, one of the most important issue is to keep security on the know-how that an ingredient of insulated material named 'SF6 gas' is included. Therefore, The aim of this paper is to improve the bonding force and air tight property between two components of composite insulator, Flange and FRP Tube.

  • PDF

A Study on the Behavior of Wrinkles in Cup Drawing with AL alloy (AL합금의 용기 성형시 주름의 거동에 관한 연구)

  • 김진무;최용식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.845-848
    • /
    • 2002
  • The wrinkling in the flange and wall of a part is a predominent failure mode in stamping of sheet metal parts. In many cases this wrinkling may be eliminated by appropriate control of the blank holding forco(BHF), but BHF affects the draw depth. Gotoh had studied the wrinkles under 0.02mm in height. In general, the height of wrinkles could be limited under 0.2mm practically. Therefore small BHP can be allowed so that the depth of drawing could be increased. Authors research the variation of the wrinkles in flange in the course of cup drawing by using aluminium alloy Al050 and A5052.

  • PDF

Local Buckling Analysis of Steel Beams at Elevated Temperature (온도상승에 따른 Steel-beam의 국부좌굴해석)

  • Jang, Myung-Woong;Kang, Moon-Myung;Kang, Sung-Duk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.1 s.7
    • /
    • pp.69-75
    • /
    • 2003
  • This paper is represented a general equations to obtain the elastic local buckling stresses for the flange and web of H-beam under compression at elevated temperatures and is also developed the software to perform the elastic local buckling analysis at elevated temperatures. Eurocode3 Part 1.2 are used to analyse the decrease in steel yield strength and elastic modulus at elevated temperatures. For design examples of 6 H-beams, the elastic local buckling stresses and critical temperatures for the slenderness ratio $(b/t_f\;and\;d/t_w)$ of the flange and web under uniform compression at elevated temperatures have been analysed by a computer program of this paper. It can be seen that the computer analytical results of this study show a good agreement with the experimental results by Wadee.

  • PDF

Lengthening of Hot Forging Die Life for Flange Yoke Forming (플랜지 요크 성형용 열간단조 금형의 수명 연장)

  • 김세환
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.1
    • /
    • pp.36-41
    • /
    • 2003
  • The purpose of this study was to find a way to lengthen the life of hot closed forging die. The fluid interpretation on the plastic deformation of billet of billet was performed by finite element method. And design modification on the impression shape was also performed. The defaced part on the impression surface was mended by the developed build-up welding method. The die life was 3,000 units but alter the procedure it was lengthened up to 5,000.

  • PDF

Calculation of Crack Width of the Top Flange of PSC Box Girder Bridge Considering Restraint Drying Shrinkage (구속 건조수축을 고려한 PSC BOX 거더교 상부플랜지 균열폭 산정)

  • Young-Ho Ku;Sang-Mook Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.30-37
    • /
    • 2023
  • The PSCB girder bridge is a closed cross-section in which the top and bottom flanges and the web are integrated, and the structural characteristics are generally different from the bridges in which the girder and the floor plate are separated, so a maintenance plan that reflects the characteristics of the PSCB girder bridge is required. As a result of analyzing damage types by collecting detailed safety diagnosis reports of highway PSCB girder bridges, most of the deterioration and damage occurring during use is concentrated on the top flange. In particular, cracks in the bridge direction on the underside of the top flange occurred in about 70 % of the PSCB girder bridges to be analyzed, and these cracks were judged to be caused by indirect loads such as heat of hydration and drying shrinkage rather than structural cracks caused by external loads. In order to improve durability and reduce maintenance costs of PSCB girder bridges in use, it is necessary to control restraint drying shrinkage cracks from the design stage. Therefore, in this paper, the cracks caused by drying shrinkage under restraint, which is the main cause of cracks under the flanges of the top part of the PSCB girder bridge, were directly calculated using the Gilbert Model, and the influencing factors such as the amount of reinforcing bars, diameter and spacing of reinforcing bars were analyzed. As a result of the analysis, it was found that the crack width caused by restraint drying shrinkage exceeded the allowable crack width of 0.2 mm for reinforcing bars with a reinforcing bar ratio of 0.01 or less based on the H16 reinforcing bar and a reinforcing bar with a diameter greater than H19 based on the reinforcing bar ratio of 0.01. Finally, based on the results of the crack width review, a method for controlling the crack width of the top flange of the PSCB girder bridge was proposed.

A Study on Die Forging of a Hollow T-shaped Part (중공 T형상의 형단조에 관한 연구)

  • 김현수;김용조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.32-39
    • /
    • 2004
  • Traditional forging of a hollow T-shaped part has been applied to forge a solid T-shaped product from a solid billet and then to machine the hollow in that. In a case, a hollow T-shaped part can be forged by backward-extruding from a solid billet. In this study, four types of forging were suggested for manufacture of hollow T-shaped parts. Forging simulations for each of these forging methods were carried out to investigate folding defect, metal flow pattern, effective strain, and forging loads. Experimental works were carried out to be compared with the simulation results. Here, the ratio of the thickness of the hollow tube to that of the flange was selected to investigate a forging defect like folding.

An Experimental Study on Simple Tension Connections for Square CFT Column to Beam Using Internal Plate with Holes (내부유공판을 사용한 각형 CFT 기둥-보 단순인장 접합부의 실험적 연구)

  • Lee, Seong Hui;Jung, Hun Mo;Yang, Il Seung;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.575-583
    • /
    • 2009
  • As the height of buildings rises, new structural systems are being applied other than theexisting S, RC, and SRC to decrease the weight of buildings and to make their construction more efficient, CFT structureshad been applied in many building construction projects due to their superior structural performance and construction efficiency. CFT structures need a diaphragm to harmoniously transmit the beam flange load to the column and the opponent beam in connections. Especially, on the right and left sides of the column other beams are connected, The establishment of a diaphragm for the lower part flange load delivery of the beam and guarantee for concrete filing capacity difficulty have (What does this mean?). In this paper, connection details are proposed in the form of a welded vertical plate with a circular hole on the CFT column's interior to harmoniously transmit the lower-part beam flange load to the column and the opponent beam. Thesediaphragm details use the concrete anchor effect in the beam flange load delivery, with the concrete-filled CFT column interior piercing the hole of the perforated plate, and a perforated board is established vertically to improve the concrete filling capacity. To analyze the structural performance of the proposed connection details, five simple tension specimens were made with the following parameters: with our without vertical and horizontal perforated plates, shear hole number, concrete filled or not, thickness of the perforated plate, etc. Then experimental tests were performed on these specimens.

A Study on Repair/ Retrofit for Deteriorations of Steel Bridge -Behavior Characteristics of Welded Joint Part of Flange and Repair/Retrofit of Fatigue Crack in Railway Steel Bridge- (강철도교 열화현상에 관한 보수/보강 연구 -강철도교의 플랜지 용접이음부의 거동 특성 및 피로균열 보수보강-)

  • Kyung, Kab Soo;Lee, Sung Jin;Park, Jin Eun;Cha, Cheol Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.613-625
    • /
    • 2012
  • Since railway bridge frequently have a chance of passing train load close to design load, it is necessary to reflect sufficiently fatigue property in early design phase for many structural details. Nevertheless fatigue cracks are reported partly in deck plate girder of railway steel bridge because of the weight and arrangement of axial load acting on railway bridge, the application of improper structural details for fatigue problem etc.. One of main cause for fatigue crack at the welded part of upper flange and web is caused by the eccentricity action of train load due to the difference of center to center spacing between the main girder supporting sleeper and the rail acting train load. For the existing deck plate girder of railway steel bridge, in this study, field survey, field measurement and a series of structural analysis were performed. In addition, the characteristics of structural behavior, the causes and repair/ retrofit of fatigue crack were examined in the target bridge.