• Title/Summary/Keyword: flammable

Search Result 513, Processing Time 0.027 seconds

Experimental Studies on the Burning Forms of Flammable Liquids (인화성액체의 연소 형태에 관한 실험적 연구)

  • Choi, Seung-Bok;Choi, Don-Mook
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.04a
    • /
    • pp.247-251
    • /
    • 2010
  • The victims of fire are increasing steadily. Fires have been occurred by arson, spontaneous combustion and various causes. As a result of that, the damages of fire got out of hand. Especially, the fires of flammable liquids are can be spreaded easily because of high calorific value and fire loads. These rapid fire spread cause the huge losses of both life and property and the malfunction of extinguishing systems. In these studies, we examined the spread pattern of surface fire on the water surface by the reappearance experiment.

  • PDF

Estimation of Flash Points of Pure Flammable Liquids -I. Alcohols- (순수 가연성액쳬의 인화점추산 -I. 알코올-)

  • 하동명;이수경;김문갑
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.2
    • /
    • pp.39-43
    • /
    • 1993
  • The flash points of flammable liquids are a fundamental and important property relative to fire and explosion hazards. A new estimation method, based on statistics (mutiple regression analysis), is being developed for the prediction of flash points of pure flammable liquids by means of computer simulation. This method has been applied to alcohol liquids. The proposed method has proved to be the general method for predicting the flash points of alcohol liquids.

  • PDF

Prediction of the Detonation Limit of the Flammable Gases and Vapors Using the Stoichiometric Coefficient (양론계수를 이용한 가연성가스와 증기의 폭굉한계 예측)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.228-233
    • /
    • 2008
  • Detonation limit is one of the major physical properties used to determine the fire and explosion hazards of the flammable substances. In this study, the lower detonation limits (LDL) and the upper detonation limits (UDL) of the flammable substances predicted with the appropriate use of the heat of combustion and the stoichiometric coefficient. The values calculated by the proposed equations were a good agreement with literature data within a few percent. From a given results, It is to be hoped that this methodology will contribute to the estimation of the detonation limits of for other flammable substances.

A Study on the Explosion Limit and Explosion Characteristics of Flammable Vapor (가연성증기의 폭발한계 및 폭발특성에 관한 연구)

  • 김영수;이민세;신창섭
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.2
    • /
    • pp.116-121
    • /
    • 1998
  • Various flammable vapors as energy source and raw material have been stored, transported in the industries, and accidental leakage of these vapors occurs occasionally. Without an appropriate protection system, flammable vapors can be ignited and serious damage results from them. To reduce the risk caused by explosion, we should know the explosion limit and explosion characteristics. In this study, the maximum explosion pressure, the maximum explosion pressure rise, the effect of temperature and mixing with other vapor were measured in a cylindrical vessel. Experimental results showed that maximum explosion pressure of flammable vapor was about 3.1~$4.2 kg/cm^2$ and it was reached 3.4 times faster than that at explosion limit. The lower explosion limit was coincided well with Le Chateilier's equation, however, upper explosion limit was not.

  • PDF

Risk Analysis of Explosion in Building by Fuel Gas

  • Jo, Young-Do;Park, Kyo-Shik;Ko, Jae Wook
    • Corrosion Science and Technology
    • /
    • v.3 no.6
    • /
    • pp.257-261
    • /
    • 2004
  • Leaking of fuel gas in a building creates flammable atmosphere and gives rise to explosion. Observations from accidents suggest that some explosions are caused by quantity of gas significantly less than the lower explosion limit amount required to fill the whole confined space, which might be attributed to inhomogeneous mixing of the leaked gas. The minimum amount of leaked gas for explosion is highly dependent on the degree of mixing in the building. This paper proposes a method for estimating minimum amount of flammable gas for explosion assuming Gaussian distribution of flammable gas.

Arson Fire Analysis Involving the Use of Flammable Liquilds as Accelerants (인화성액체를 촉진제로 사용한 방화화재의 감식기법에 관한 연구)

  • Choi, Min-Ki;Han, Dong-Hun;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.64-72
    • /
    • 2014
  • Flammable liquids residues in fire debris and pyrolysis products of flammable materials were analyzed by using Gas detecting tube, Gas Chromatograph/Mass Spectrometers (GC/MS), and Pyrolyzer. Comparison studies between chemical components detected in debris fired with and without Flammable liquids were performed. Though Flammable liquids were not present in debris, Gas detecting tube colors were also changed. Chemical components produced from conventional combustions were different from those produced from pyrolysis. Due to the difference of the reaction conditions between combustions and pyrolysis, different chemical products were produced. Petrochemical products of PVC wood-linoleum block could produce ignitable chemicals, such as toluene, ethylbenzene, undecane, and dodecane. So, for better fire investigation more consideration of those chemicals will be porformed.

An Experimental Study on the Fire Risk of Electric Heaters According to Contact of Flammable Materials (가연물 접촉에 따른 전기히터의 화재위험성에 관한 실험적 연구)

  • Lee, Sung-Ryong
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.63-71
    • /
    • 2011
  • In this study, it was evaluated the fire risk of an electric heater as representative seasonal appliances. Two type of electric heaters were used in experiments. When electric heaters were operated, temperature variation was measured around the heater. Internal structure was understood by Nondestructive inspection. It was evaluated the tire risk of electric heaters, when flammable materials were positioned ear a heater. It was also estimated the probability of a tire in case of malfunction of a safety tip-over witch. When a heater was operated in a normal condition, temperature was maintained under $80^{\circ}C$ around the heater. The possibility of a fire is very high, when a heater is covered with flammable materials or malfunction of safety parts (safety tip-over switch, anti-overheating devices).

A Study on the Estimation Model of Liquid Evaporation Rate for Classification of Flammable Liquid Explosion Hazardous Area (인화성액체의 폭발위험장소 설정을 위한 증발율 추정 모델 연구)

  • Jung, Yong Jae;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.21-29
    • /
    • 2018
  • In many companies handling flammable liquids, explosion-proof electrical equipment have been installed according to the Korean Industrial Standards (KS C IEC 60079-10-1). In these standards, hazardous area for explosive gas atmospheres has to be classified by the evaluation of the evaporation rate of flammable liquid leakage. The evaporation rate is an important factor to determine the zones classification and hazardous area distance. However, there is no systematic method or rule for the estimation of evaporation rate in these standards and the first principle equations of a evaporation rate are very difficult. Thus, it is really hard for industrial workplaces to employ these equations. Thus, this problem can trigger inaccurate results for evaluating evaporation range. In this study, empirical models for estimating an evaporation rate of flammable liquid have been developed to tackle this problem. Throughout the sensitivity analysis of the first principle equations, it can be found that main factors for the evaporation rate are wind speed and temperature and empirical models have to be nonlinear. Polynomial regression is employed to build empirical models. Methanol, benzene, para-xylene and toluene are selected as case studies to verify the accuracy of empirical models.

A Study on the Fire Sources Analysis Using the Optical Characteristics of Smoke Particles and Neural Networks (연기입자의 광학적 특성과 신경망을 이용한 화원분석에 대한 연구)

  • Jee, Seung-Wook
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.64-70
    • /
    • 2014
  • The neural networks were able to be used by analyze fire source with the optical characteristics of smoke particles. The neural networks were learned the optical characteristics for three types test fire (paper, wood, flammable liquid). These test fires which were adopted in this study were also used to performance test of smoke detector according to UL268. A smoke chamber which was able to detect light extinction and scattering simultaneously was created. The optical characteristics of smoke particles were measured by the smoke chamber. And the results were used to input data for the neural networks. The neural networks distinguished the fire source accurately for paper fire, wood fire or flammable liquid fire. The neural networks distinguished accurately the combined fire source such as paper-wood fire, paper-flammable liquid fire or wood-flammable liquid fire.

A Study on Explosive Limits of Flammable Materials - Explosive Limits of Ternary System by Means of Solution Thermodynamics and MRSM Model - (가연성물질의 폭발한계에 관한 연구 - 용액열역학 및 MRSM 모델에 의한 3성분계 폭발한계 -)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.91-97
    • /
    • 2005
  • The research on the explosive limits is one of fundamental fields of combustion process, and information on the explosive limits of mixture of fuel and oxidant, with or without additives, is very important for the prevention in industrial fire and explosion accidents. Explosive limits of all compounds and solvent mixtures can be calculated with the appropriate use of the fundamental laws of Raoult, Batten, Le Chatelier and MRSM(modified response surface methodology) model. In this study, the reference values of lower explosive limits(LEL) of the ethanol+toluene+ethylacetate system were compared with the calculated values by using the solution thermodynamics and the MRSM model, respectively. The values calculated by the proposed equations were a good agreement with literature data within a few percent. By means of this methodology, it is possible to evaluate reliability of experimental data of the lower explosive limits of the flammable mixtures. Also, from given results, it is possible to predict explosive limits of the other flammable liquid mixtures used in the chemical process by the use of the proposed equations.