• Title/Summary/Keyword: flame stability

Search Result 395, Processing Time 0.023 seconds

The Stability of Turbulent nonpremixed interacting Flames (다수노즐에 의한 확산화염의 안정성 확대에 관한 연구)

  • Kim, Jin-Hyun;Lee, Byeong-Jun
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.201-207
    • /
    • 2003
  • Characteristic of turbulent nonpremixed interacting flames are investigated experimentally 8 or 9 nozzles are arranged in the shape of matrix or circle. When there is no center nozzle, flame is more stable than with center nozzle case. It is shown that these blowout limit enlargements are related with the recirculation of burnt gases. The interacting flame base was not located at the stoichiometric point. NO concentrations of interacting flame are smaller than that of single flame using same area nozzle.

  • PDF

Basic Study on the Flame Stability of Burner for Regeneration of Diesel Particulate Filter in Engine Exhaust Gas (DPF 재생용 버너의 엔진 배기 중에서의 화염 안정성 구현을 위한 기초 연구)

  • Shim, Sung-Hoon;Jeong, Sang-Hyun;Hong, Won-Seok
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.4
    • /
    • pp.10-17
    • /
    • 2005
  • Sustaining of flame stability of the burner installed in Dielsel exhaust pipe is very difficult because of steep fluctuation of pressure and flow rate. A burner for DPF (Diesel Particulate Filter) which clogged by collected soot regeneration has been made of metal fiber for the purpose of realization of flame stability even in unfavorable condition of Diesel engine exhaust. Flame stability of the metal fiber burner has been investigated in various condition of engine operation. It has been identified that metal fiber burner with liner which has swirl guide vane presents excellent flame stability even in the higher engine revolutions than 3000rpm and sudden variation. The results offer the possibility of development of full flow burner system for DPF regeneration.

  • PDF

Effect of Chemical Interaction on Flame Extinction in Interacting H2-air and CO-air Premixed Flames (H2-공기와 CO-공기의 예혼합화염의 화염소화에 있어서 화학적 상호작용의 효과)

  • Jung, Seongwook;Park, Jeong;Kwon, Ohboong;Keel, Sangin;Yun, Jinhan
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.44-52
    • /
    • 2013
  • Important role of chemical interaction in flame extinction was numerically investigated in downstream interaction among lean(rich) and lean(rich) premixed as well as partially premixed $H_2$-air and CO-air flames. The strain rate varied from 30 to $5917s^{-1}$ until interacting flame could not be sustained anymore. Flame stability diagrams mapping lower and upper limit fuel concentrations for flame extinction as a function of strain rate are presented. Highly stretched interacting flames were survived only within two islands in the flame stability map where partially premixed mixture consisted of rich $H_2$-air flame, extremely lean CO-air flame, and a diffusion flame. Further increase in strain rate finally converges to two points. Appreciable amount of hydrogen in the side of lean $H_2$-air flame also oxidized the CO penetrated from CO-air flame, and this reduced flame speed of the $H_2$-air flame, leading to flame extinction. At extremely high strain rates, interacting flames were survived only by a partially premixed flame such that it consisted of a very rich $H_2$-air flame, an extremely lean CO-air flame, and a diffusion flame. In such a situation, both the weaker $H_2$-air and CO-air flames were parasite on the stronger diffusion flame such that it could lead to flame extinction in the situation of weakening the stronger diffusion flame. Particular concerns are focused on important role of chemical interaction in flame extinction was also discussed in detail.

In-cylinder Flame Visualization and Flame Propagation Characteristics of SI Engine by using Optimal Threshold Method (Optimal Threshold 법을 이용한 가솔린 기관의 실린더 내화염 가시화 및 화염 전파 특성에 관한 연구)

  • 김진수;전문수;윤정의
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.96-104
    • /
    • 2000
  • It is well known that combustion stability under idle and part-load conditions directly affect fuel economy and exhaust emission. In practice, there have been a lot of studies so that a significant improvement in combustion stability has been achieved in this research field. However, applying published results to the development process of mass production engine, there are still many problems which are solved previously. In this study, initial flame behavior and flame propagation characteristic were investigated statistically in order to optimize combustion chamber shapes in the development stage of mass production S.I. engine. To the purpose, the authors applied the flame image capturing system to single cylinder optical engine. The captured flame images were effectively analyzed by using the image processing program which was developed by the authors and adopted new threshold algorithm instead of conventional histogram analysis. In addition, the cylinder pressure was also measured simultaneously to compare evaluated flame results with cylinder pressure data in terms of the combustion characteristics, combustion stability, and cycle-to-cycle combustion variability.

  • PDF

Flame Stability of Dual Swirl Combustor with variable SNG composition using the Chemiluminescence Measurement (자발광 계측을 통한 모사 SNG 수소함량에 따른 이중선회 버너의 화염 안정화 특성)

  • Choi, Inchan;Oh, Kwangchul;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.147-148
    • /
    • 2014
  • This article describes an investigation of flame stability characteristics with various compositions of synthetic natural gas (SNG) in dual swirl combustor. The objective of this study is to investigate the flame stabilization, flame structure, fuel compatibility using chemiluminescence measurement in SNG with varying fuel compositions. As experimental conditions, hydrogen content was adjusted from 0 to 11%. Experimental results show that the addition of hydrogen has a major effect on flame behavior due to the higher burning rates associated with hydrogen consequently, The higher reaction activity of hydrogen has extended lean blow-off limit. Especially, DI flame limit has improved more 12.1%.

  • PDF

Stabilization Characteristics of Diffusion Flame with Auxiliary Fuel Supply through a Bluff Body (보조연료의 공급이 확산화염의 보염특성에 미치는 영향)

  • An, J.G.;Song, K.K.
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.11-18
    • /
    • 1996
  • The stabilization characteristics of diffusion flame formed behind a bluff body with fuel injection slits was experimentally investigated by varying main fuel injection angles and auxiliary fuel injection conditions. The flame stability limits, temperature and length of recirculation zone, direct and schlieren photographs of flames were measured in order to study the stabilization mechanism of the diffusion flame. The results of this investigation are as follows. The stability limits can be improved by the condition of the kind and quanity of the injected auxiliary fuel. The length and temperature decrease with injection of auxiliary fuel, and these phenomena are remarkable when LPG is injected into the recirculation zone. When the LPG is injected into the recirculation zone, flame remains sooty. Fluctuation of fuel and main stream is generated actively by air injection.

  • PDF

A Study on the Combustion Characteristics of Turbulent Diffusion Flame Stabilized by Bluff Body (보염기에 의해 안정되는 난류확산화염의 연소특성에 관한 연구)

  • An, J.G.;Song, K.K.
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.1
    • /
    • pp.71-78
    • /
    • 1998
  • The flame stabilization and the combustion characteristics of diffusion flame formed in the wake of a cylindrical bluff body with fuel injection are studied. With the turbulence generator, the flame stability limits and ion currents were measured and analyzed. The results from this experimental study are summarized as follows. The region with highest average value of ion currents in the middle of flame is moved to the upstream side by the turbulent components of main stream. The flame mass with partially active reaction is moved fast for uniform flow and turbulence generator G3, but the flame mass with relatively slow reaction is moved slowly for turbulence generator G1. If the turbulence generator with strong turbulent component is installed, the turbulent time scale is increased with movement from main stream side to recirculation zone as well as the flame stability limits is deteriorated. Though the special dominant frequency is not appeared in the eddy which exists in flame, high frequency characteristics are appeared in uniform flow and turbulence generator G3, and low frequency characteristics are appeared in uniform flow, turbulence generator G3 and G1.

  • PDF

Effects of Microwave Induction on the Liftoff and NOx Emission in Methane Micro Jet Flames (메탄 마이크로 제트화염의 부상과 NOx 배출에 대한 마이크로파 효과)

  • Jeon, Young Hoon;Lee, Eui Ju
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.2
    • /
    • pp.22-28
    • /
    • 2016
  • High efficient and environment friendly combustion technologies are used to be operated an extreme condition, which results in unintended flame instability such as extinction and oscillation. The use of electromagnetic energy is one of methods to enhance the combustion stability and a microwave as electromagnetic wave is receiving increased attention recently because of its high performance and low-cost system. In this study, an experiment was performed with jet diffusion flames induced by microwave. Micro jet was introduced to simulate the high velocity of industrial combustor. The results show that micro jet flames had three different modes with increasing oxidizer velocity; attached yellow flame, lifted flame, and lifted partially premixed flame. As a microwave was induced to flames, the overall flame stability and blowout limit were extended with the higher microwave power. Especially the interaction between a flame and a microwave was shown clearly in the partially premixed flame, in which the lift-off height decreased and NOx emission measured in post flame region increased with increasing microwave power. It might be attributed to increase of reactivity due to the abundance of radical pool and the enhanced absorption to thermal energy.

Characteristics of Flame Stabilization of the LFG Mixing Gas (LFG 혼합연료의 화염 안정화 특성)

  • Lee, Chang-Eon;Hwang, Cheol-Hong;Kim, Seon-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.328-335
    • /
    • 2002
  • In this study, experiments were performed to investigate the characteristics of flame stabilization of the LFG mixing gas. LFG has merely half heating value compared with liquified natural gas but can be greatly utilized as a commercial fuel. In order to use LFG in practical combustors, Webbe Index and heating value of LFG mixing gas were adjusted by mixing LPG with LFG. The comparisons were conducted between CH$_4$and LFG mixing gas for searching the region of flame stabilization based upon the flame blowout at maximum fuel stream velocity. As a result, the flame stability of LFG mixing gas was not improved with that of CH$_4$in non-swirl and weak swirl diffusion flame. However, LFG mixing gas had wide flame stabilization region rather than CH$_4$with increasing ambient flow rate in strong swirl. It was also found that flame stability was affected by included quantity of inert gas such as CO$_2$in the weak swirl but by heating value of fuel in strong swirl.

The Characteristic Modes and Structures of Bluff-Body Stabilized Flames in Supersonic Coflow Air

  • Kim, Ji-Ho;Yoon, Young-Bin;Park, Chul-Woung;Hahn, Jae-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.386-397
    • /
    • 2012
  • The stability and structure of bluff-body stabilized hydrogen flames were investigated numerically and experimentally. The velocity of coflowing air was varied from subsonic velocity to a supersonic velocity of Mach 1.8. OH PLIF images and Schlieren images were used for analysis. Flame regimes were used to classify the characteristic flame modes according to the variation of the fuel-air velocity ratio, into jet-like flame, central-jet-dominated flame, and recirculation zone flame. Stability curves were drawn to find the blowout regimes and to show the improvement in flame stability with increasing lip thickness of the fuel tube, which acts as a bluff-body. These curves collapse to a single line when the blowout curves are normalized by the size of the bluff-body. The variation of flame length with the increase in air flow rate was also investigated. In the subsonic coflow condition, the flame length decreased significantly, but in the supersonic coflow condition, the flame length increased slowly and finally reached a near-constant value. This phenomenon is attributed to the air-entrainment of subsonic flow and the compressibility effect of supersonic flow. The closed-tip recirculation zone flames in supersonic coflow had a reacting core in the partially premixed zone, where the fuel jet lost its momentum due to the high-pressure zone and followed the recirculation zone; this behavior resulted in the long characteristic time for the fuel-air mixing.