• Title/Summary/Keyword: flame speed

Search Result 397, Processing Time 0.027 seconds

Radiation Damage by the Pool Fire of LNG Storage Tank (LNG 저장 탱크의 Pool Fire에 의한 복사열 피해)

  • Sohn Jung-Hwan;Hahn Yoon-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.14-22
    • /
    • 1998
  • In this work, in order to quantitatively predict the radiation flux and propose an idea about how to reduce the radiation damage, the radiation flux caused by pool fire of an LNG storage tank has been calculated using the RISC (Risk and Industrial Safety Consultant) proposed model under various conditions. Model predictions showed that the most important parameter affecting the radiation flux by the LNG pool fire is the wind speed. The extent of radiation damage to a target from fire flame was more significant with variation of wind speed at a low wind speed than with that at a high wind speed. It was found that the radiation damage by the former is substantially reduced with planting windbreak system around the plant. Since the windbreak is most economical than any other method, it is strongly suggested to plant a tree belt in the factory surroundings, especially near by the area of gas storage facilities, linking with water cooling and fire protection systems.

  • PDF

A Design of the DFE based Receiver Equalizer for 40 Gb/s Backplane Ethernet (40Gb/s 백플레인 이더넷을 위한 DFE 수신등화기)

  • Yang, Choong-Reol;Kim, Kwang-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2B
    • /
    • pp.197-209
    • /
    • 2010
  • In this paper, We have designed and analyzed a characteristics of backplane channel having 40 inch strip line length of four lanes and Flame Retardant four (PR-4) material, and have designed 40 Gb/s Receive and adaptive equalizer and its high-speed equalization algorithm using the backplane channel characteristics. For 40 Gb/s high-speed data communications pass through the backplane, a 10Gb/s 4 channel receive & equalizer with DFE except for FFE was proposed. This receive and equalizer meets the requirements of the IEEE Std P802.3ba standard-based receive equalizer to implement equalizers on the receive end of a 46 inch length's backplane channel.

An Experimental Study for the Effect of Intake Port Flows on the Tumble Generation and Breakdown in a Motored Engine (모터링엔진의 흡기포트 유동변화에 따른 텀블생성 및 소멸에 관한 실험적 연구)

  • 강건용;이진욱;정석용;백제현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.912-919
    • /
    • 1994
  • The engine combustion is one of the most important processes affecting performance and emissions. One effective way to improve the engine combustion is to control the motion of the charge inside a cylinder by means of optimum induction system design, because the flame speed is mainly determined by the turbulence at compression(TDC) process in S.I. engine. It is believed that the tumble and swirl motion generated during intake stroke breaks down into small-scale turbulence in the compression stroke of the cycle. However, the exact nature of this relationship is not well known. This paper describes the tumble flow measurements inside the cylinder of a 4-valve S.I. engine using laser Doppler velocimetry(LDV) under motoring(non-firing) conditions. This is conducted on an optically assesed single cylinder research engine under motored conditions at an engine speed of 1000rpm. Three different cylinder head intake port configurations are studied to develop a better understanding the tumble flow generation, development, and breakdown mechanisms.

Technical Review and Analysis of Ramjet/Scramjet Technology II. Scramjet and Combined Cycle Engine (램제트/스크램제트의 기술동향과 기술분석 II. 스크램제트 및 복합엔진)

  • Sung Hong-Gye;Yoon Hyun-Gull
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.115-128
    • /
    • 2006
  • A technical analysis of current scramjet and combined-cycle engine is presented. Substantial research has been pursued to characterize the operation mechanism of scramjet propulsion, especially in the areas of flame stabilization and system integration, dramatically over the years in support of both military and space access application. Major technology that had significant impact on the maturation of scramjet propulsion technology are dual combustion ramjet, dual mode ramjet, and combined cycle engine to cover a typical wide rage of flight, up to flight Mach number 10. Notable are the fundamental and practical techniques, for instance, scram propulsion itself, thermal relaxation and protection using endothermic fuel and/or CSiC composit materials, and design/manufacture of movable intake and nozzle, to realize high speed propulsion system in near future.

The comparison of radial and axial flow porous burners from viewpoint of output radiative heat transfer and emissions

  • Tabari, N. Ghiasi;Astaraki, M.R.;Arabi, A.H.
    • Coupled systems mechanics
    • /
    • v.1 no.3
    • /
    • pp.285-295
    • /
    • 2012
  • In this paper, two types of porous burners with radial and axial flow have been modeled numerically and compared. For this purpose, governing equations were solved one-dimensionally for methane-air premix gas. The mechanism used in simulating combustion phenomenon was 15 stage reduced mechanism based on GRI3.0. In order to compare the two burners, the inlet flow rate and fuel-air ratio have been assumed equal for the two burners. The results of the study indicated that reduction in speed and increase in cross-section area in the direction of flow have a considerable influence on the behavior of radial burner in comparison to axial burner. Regarding temperature distribution inside the burner, it was observed that the two above mentioned factors can be influential in temperature of flame propagation region. Also, regarding distribution of CO and NO emission, the results indicate that the porous radial burner has lower emissions in comparison to the axial once. The output radiative heat transfer efficiency of the two burners was also compared and in this case also even the radial porous burner was found to be preferable.

Research on tumble and flow analysis in cylinder for marine engine (선박엔진내 유동의 텀블 및 거동해석에 관한 연구)

  • Lee, Byoung-Hwa;Seol, Dong-Il;Jang, Young-June;Jeon, Chung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3306-3310
    • /
    • 2007
  • Many researches have been studied on in-cylinder flow as one of dominant effects for an engine combustion. Specially because the combustion flame speed is mainly determined by the turbulence at the end of compression process. Tumble and Turbulence ahead of combustion is very important phenomenon. As this phenomenon make research certainly, combustion condition will effectively be improve. This paper describes analytical results of the tumble flow, intensity, turbulence inside the cylinder of maritime engine. 3-D computation has been performed by using STAR-CD v3.26 solver and es-ice

  • PDF

Self Ignition Phenomena of High Pressure Hydrogen Released into Tube with Diaphragm Rupture Conditions (튜브 내 누출되는 고압수소의 격막파열조건에 따른 자발점화 현상)

  • Lim, Han Seuk;Lee, Sang Yoon;Lee, Hyoung Jin;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.215-218
    • /
    • 2014
  • High combustion efficiency of hydrogen could make it an ideal source of green energy in the future. At this time, high pressure vessel is the most reasonable method of storing hydrogen. However, such a high pressurized vessel could pose a critical threat if ruptured. For this reason, it is important to understand the mechanism of hydrogen's self-ignition when a high-pressure hydrogen released into air. This paper presents several visualization images as experimental results using high-speed camera. From the visualization images, the ignition is initiated near rupture disk immediately after failure of disk. And the initial ignition and flame is stronger as a rupture pressure increases. However, this ignition region do not affect the general self-ignition mechanism when a high-pressure hydrogen is released into air through tue after failure of disk.

  • PDF

A study on performance improvement of natural gas fueled engine (천연가스 기관의 성능 향상에 관한 연구)

  • 정동수;정진도;서승우;최교남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.175-179
    • /
    • 1992
  • Generally speaking, natural gas possesses several characteristics that make it desirable as an engine fuel : for example (1) lower production cost, (2) abundant commodity and (3) cleaner energy source than gasoline. Due to the physical characteristics of natural gas, the volumetric efficiency and flame speed of a natural gas engine are lower than those of a gasoline engine, which results in a power loss of 10-20% when compared to a convensional gasoline engine. This paper describes the results of a research to improve the performance of a natural gas engine through the modification and controls of air/fuel ratio, spark timing advance and supercharging effect by forced air supply method.

EFFECTS OF CAM PHASE AND SPARK RETARD TO INCREASE EXHAUST GAS TEMPERATURE IN THE COLD START PERIOD OF AN SI ENGINE

  • KIM D.-S.;CHO Y.-S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.585-590
    • /
    • 2005
  • The effects of spark timing and exhaust valve timing change on exhaust gas temperature during cold start period of an SI engine are studied through engine bench tests. The exhaust gas temperature increases when the spark timing or valve timing are retarded individually, due to late combustion or slow flame speed. Therefore, exhaust gas temperature shows a large increase when the two timings are retarded simultaneously. However, it is considered that combustion stability during cold start deteriorated under these retarded conditions. To increase exhaust gas temperature for fast warmup of catalysts while maintaining combustion stability, an optimal condition for spark and valve timing retard should be applied for the cold start period.

Turbojet Engine Control Using Artificial Neural Network PID Controller With High Gain Observer (고이득 관측기가 적용된 터보제트엔진의 인공신경망 PID 제어기 설계)

  • Kim, Dae-Gi;Jie, Min-Seok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • In this paper, controller propose to prevent compressor surge and improve the transient response of the fuel flow control system of turbojet engine. Turbojet engine controller is designed by applying Artificial Neural Network PID control algorithm and make an inference by applying Levenberg-Marquartdt Error Back Propagation Algorithm. Artificial Neural Network inference results are used as the fuel flow control inputs to prevent compressor surge and flame-out for turbojet engine for UAV. High Gain Observer is used to estimate to compressor rotation speed of turbojet engine. Using MATLAB to perform computer simulations verified the performance of the proposed controller. Response characteristics pursuant to the gain were analyzed by simulation.