• Title/Summary/Keyword: flame size

Search Result 312, Processing Time 0.032 seconds

The Effects of Fuel Temperature on the Spray and Combustion Characteristics of a DISI Engine (직접분사식 가솔린 엔진에서 연료 온도에 따른 팬형 분무 및 연소 특성의 변화)

  • Moon, Seok-Su;Abo-Serie, Essam;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.103-111
    • /
    • 2006
  • The spray behavior of direct-injection spark-ignition(DISI) engines is crucial for obtaining the required mixture distribution for optimal engine combustion. The spray characteristics of DISI engines are affected by many factors such as piston bowl shape, air flow, ambient temperature, injection pressure and fuel temperature. In this study, the effect of fuel temperature on the spray and combustion characteristics was partially investigated for the wall-guided system. The effect of fuel temperature on the fan spray characteristics was investigated in a steady flow rig embodied in a wind tunnel. The shadowgraphy and direct imaging methods were employed to visualize the spray development at different fuel temperatures. The microscopic characteristics of spray were investigated by the particle size measurements using a phase Doppler anemometry(PDA). The effect of injector temperature on the engine combustion characteristics during cold start and warming-up operating conditions was also investigated. Optical single cylinder DISI engine was used for the test, and the successive flame images captured by high speed camera, engine-out emissions and performance data have been analyzed. This could give the way of forming the stable mixture near the spark plug to achieve the stable combustion of DISI engine.

Evaluation of an Organic-Inorganic Hybrid Insulation Material using an Inorganic Filler and Polyurethane with a Foaming Condition (무기질 충진재와 폴리우레탄을 활용한 유·무기 복합 단열소재의 발포조건에 따른 특성 평가)

  • Noh, Hyun-Kyung;Song, Hun;Chu, Yong-Sik;Park, Ji-Sun;Lee, Jong-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.654-658
    • /
    • 2012
  • In this work, the properties of an organic-inorganic hybrid insulating material using an inorganic filler and polyurethane foam with different foaming conditions were investigated. At weight ratios of polyol and isocyanate of 1 to 1.2 good foaming properties were noted. In addition, an addition of 0.4 g of water, 0.1 g of surfactant, and 0.1 g of catalyst with respect to the composites of polyol at 5 g and isocyanate at 6 g showed the lowest apparent density and thermal conductivity. The pore size was smaller in the organic-inorganic hybrid foaming body with an increase in the $CaCO_3$ addition amount. Moreover, the apparent density and thermal conductivity were increased when the added amount of $CaCO_3$ increased. Increasing the amount of $CaCO_3$ powder is expected to improve the flame retardant capabilities; however, doing this tends to increase the apparent density and thermal conductivity.

A Semi-Active Control of the Combustion Instability in a Ducted Premixed Flame (덕트 형상 연소기의 연소불안정에 대한 Semi-Active Control)

  • Song, Jae-Cheon;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin;Lee, Jong-Guen
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1131-1139
    • /
    • 2009
  • Combustion Instabilities are caused by a coupling between acoustic waves and unsteady heat release. They can be eliminated using passive controller such as a Helmholtz resonator. But, Helmholtz resonator is normally only effective over a narrow frequency range. In this work, Helmholtz resonator is applied for reducing the combustion oscillations and we vary the Helmholtz resonator volume using piston in oder to tune in the wide range of operating conditions. As the result, it is found that the dominant combustion oscillations can be largely reduced by optimizing the size of resonator volume. And, interesting relation for phase difference of dynamic pressure both combustor and the helmholtz resonator are presented in this paper. Also, we investigate semi-active control using Helmholtz equation and phase difference.

Particle System Editor for Special Effects in Game and Virtual Reality (게임 및 가상현실에서의 특수효과를 위한 입자 시스템 에디터)

  • 김응곤;송승헌
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.429-433
    • /
    • 2004
  • In games and films, the most highlighted fields in entertainment industry, those special effects such as flame, explosion, smoke, liquid, snow, rain and dust are generated through the particle system. Special effects can be expressed realistically by the particle system API that is a graphic library of high level in game and virtual reality. When developers apply the particle system API in applications, they must exchange parameters repeatedly and compile source codes until special efforts that they want are expressed, and It takes much time until the minute control that have relations between each parameters. This paper develops a particle system API usable in on-line game and real-time virtual reality and presents particle system editor that can see and create special effect easily through attributes adjustment such as position, velocity, color, transparency, size, age, the secondary position, the second velocity etc.

  • PDF

A Experimental Study on Window Glass Breakage in Compartment Fires (구획 화재시 창유리 파괴 현상에 관한 실험적 연구)

  • 이수경;김종훈;최종운;이정훈
    • Fire Science and Engineering
    • /
    • v.12 no.3
    • /
    • pp.21-30
    • /
    • 1998
  • This is a study on the relation of window glass breaking time, shape, and vent condition in a compartment fire through the experiment. We recognize the phenomenon that window glass breakage in a compartment fire be arose from the thermal stresses due to the temperature temperature difference was 233.4$^{\circ}C$ for test 1-3, 138$^{\circ}C$ for text 2-1, 83.6$^{\circ}C$ for test 2-2. The interior test 2-2, 400.9$^{\circ}C$ for test 2-3. so if the flame didn't reach at the surface of window glass, the breakage of glass occure at 40$0^{\circ}C$~50$0^{\circ}C$. when the fire size reached to 1541.14kW, the window might be broken by thermal stress. But window glass was not collapsed.

  • PDF

Sensitivity analysis of input variables to establish fire damage thresholds for redundant electrical panels

  • Kim, Byeongjun;Lee, Jaiho;Shin, Weon Gyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.84-96
    • /
    • 2022
  • In the worst case, a temporary ignition source (also known as transient combustibles) between two electrical panels can damage both panels. Mitigation strategies for electrical panel fires were previously developed using fire modeling and risk analysis. However, since they do not comply with deterministic fire protection requirements, it is necessary to analyze the boundary values at which combustibles may damage targets depending on various factors. In the present study, a sensitivity analysis of input variables related to the damage threshold of two electrical panels was performed for dimensionless geometry using a Fire Dynamics Simulator (FDS). A new methodology using a damage evaluation map was developed to assess the damage of the electrical panel. The input variables were the distance between the electrical panels, the vertical height of the fuel, the size of the fire, the wind speed and the wind direction. The heat flux was determined to increase as the vertical distance between the fuel and the panel decreased, and the largest heat flux was predicted when the vertical separation distance divided by one half flame length was 0.3-0.5. As the distance between the panels increases, the heat flux decreases according to the power law, and damage can be avoided when the distance between the fuel and the panel is twice the length of the panel. When the wind direction is east and south, to avoid damage to the electrical panel the distance must be increased by 1.5 times compared to no wind. The present scale model can be applied to any configuration where combustibles are located between two electrical panels, and can provide useful guidance for the design of redundant electrical panels.

A Study on Variation of Trans Fatty Acid with Heat Treatment of Corn Oils (가열조리에 의한 옥수수유의 트랜스지방산 변화에 관한 연구)

  • Kim, Myung-Gil;Kim, Jong-Chan;Ko, Hoan-Uck;Lee, Jung-Bok;Kim, Young-Sung;Park, Yong-Bae;Lee, Myung-Jin;Kim, Jae-Kwan;Kim, Kyung-A;Park, Eun-Mi
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.4
    • /
    • pp.311-316
    • /
    • 2007
  • Trans fatty acid components separated and quantified using a SP-2560 capillary column in a gas chromatograph (GC) with flame ionization detector (FID). Trans fatty acid and total fatty acid contents were measured in 21 corn oils. Ranges of values for trans fatty acid (tFAs) contents of total fat (as g/100g fatty acids) were com oils $0.65{\pm}0.31$. Corn oils were heated at $175{\pm}5^{\circ}C$ for 5mins $(0{\sim}15\;times)$. The contents of tFAs (g/100) were increased from 0.292 (0 time) to 2.585 (15 times) in com oil. When frying oils (15 times) were incubated at $20{\pm}5^{\circ}C$ for 150 days, the contents of tFAs (g/100g) were increased from 2.585 to 3.683 in com oil. The amounts of tFAs (g) per serving size of frying oils (15 times) were increased from 0.01 to 0.18 in corn oil. The levels of the 18:1 trans isomers increased significantly the time of reusing of com oil.

The Characteristics of Firefighter Burn Injuries in a Burn Center: A Retrospective Epidemiological Study (소방관 화상 환자의 화상수상특징에 대한 1개 화상전문병원에서의 예비조사)

  • Kim, Hyeongtae;Kang, Gu Hyun;Jang, Yong Soo;Kim, Wonhee;Choi, Hyun Young;Kim, Jae Guk;Kim, Minji;You, Ki Cheol;Kim, Dohern;Yim, Haejun;Bang, Sung Hwan;Lee, Chang Sub
    • Journal of the Korean Burn Society
    • /
    • v.19 no.1
    • /
    • pp.12-15
    • /
    • 2016
  • Purpose: Firefighters are vulnerable to burn injury during firefighting. In extensive fires, conducted heat and radiant heat can cause burn injury even though firefighters are not directly exposed to fire. There has been increasing interest in the health problems of firefighters considerably since Hongje-dong fire of 2001, which claimed the lives of six fireman. However, there have been no studies done on the characteristics of firefighter burn injuries in South Korea. Therefore, we investigated the characteristics of firefighter burn injuries in a burn center. Methods: A retrospective, single-center research was performed between Jan 2006 to Dec 2015. 24 firefighters came to the burn center. The electronic medical records of patients were reviewed. Results: Flame burns (87.5%) were the major cause of burn in firefighter. All the patients suffered second-degree or third-degree burns. Mean burn size was 6.1±6.7%. 22 of 24 patients were hospitalized and 2 of 22 hospitalized patients admitted to intensive care unit. Mean length of hospitalization was 29.1±23.7 days and mean length of intensive care unit hospitalization was 6.0±1.4 days. The face was the site most commonly burned, representing 25.8% of injuries. The hand/wrist, upper extremity, and neck were the next largest groups, with 19.4, 12.9, 11.3% of the injuries, respectively. Conclusion: Firefighter burn injuries occur to predictable anatomic sites with common injury patterns. The burn size was small but, admitted patients need about 30 days of hospitalization.

A historical study of the Large Banner, a symbol of the military dignity of the Late Joseon Dynasty (조선 후기 무위(武威)의 상징 대기치(大旗幟) 고증)

  • JAE, Songhee;KIM, Youngsun
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.4
    • /
    • pp.152-173
    • /
    • 2021
  • The Large Banner was introduced during the Japanese Invasions of Korea with a new military system. It was a flag that controlled the movement of soldiers in military training. In addition, it was used in other ways, such as a symbol when receiving a king in a military camp, a flag raised on the front of a royal procession, at the reception and dispatch of envoys, and at a local official's procession. The Large Banner was recognized as a symbol of military dignity and training rites. The Large Banner was analyzed in the present study in the context of two different types of decorations. Type I includes chungdogi, gakgi and moongi. Type II includes grand, medium, and small obangi, geumgogi and pyomigi. Each type is decorated differently for each purpose. The size of the flag is estimated to be a square of over 4 ja long in length. Flame edges were attached to one side and run up and down The Large Banner used the Five Direction Colors based on the traditional principles of Yin-Yang and Five Elements. The pattern of the Large Banner is largely distinguished by four. The pattern of large obangi consists of divine beasts symbolizing the Five Directions and a Taoism amulet letter. The pattern of medium obangi features spiritual generals that escort the Five Directions. The pattern of small obangi has the Eight Trigrams. The pattern of moongi consists of a tiger with wings that keeps a tight watch on the army's doors. As for historical sources of coloring for Large Banner production, the color-written copy named Gije, from the collection of the Osaka Prefect Library, was confirmed as the style of the Yongho Camp in the mid to late 18th century, and it was also used for this essay and visualization work. We used Cloud-patterned Satin Damask as the background material for Large Banner production, to reveal the dignity of the military. The size of the 4 ja flag was determined to be 170 cm long and 145 cm wide, and the 5 ja flag was 200 cm long and 175 cm wide. The conversion formula used for this work was Youngjochuck (1 ja =30cm). In addition, the order of hierarchy in the Flag of the King was discovered within all flags of the late Joseon Dynasty. In the above historical study, the two types of Large Banner were visualized. The visualization considered the size of the flag, the decoration of the flagpole, and the patterns described in this essay to restore them to their original shape laid out the 18th century relics on the background. By presenting color, size, material patterns, and auxiliary items together, it was possible not only to produce 3D content, but also to produce real products.

Evaluation of the combustion chamber for burning candle and measuring the emission factor of its’ combustion products (양초 연소 시 발생되는 오염물질 방출계수 측정을 위한 연소실 제작과 평가)

  • Lim, Hyung-Jin;Kim, Man-Goo
    • Analytical Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.236-245
    • /
    • 2015
  • Recently, candles have been widely used to create a romantic atmosphere and to heat tea. In this study, a small combustion chamber for candle was designed using an 0.008 m3 bell jar. The emission factors of combustion products were then measured. The combustion chamber includes a glass dish, which prevents candle flame from affecting the composition of the gas emitted through the exhaust outlet. The outlet in the combustion chamber was designed as a cone shape, and it was lengthened to prevent flow from the outside, which could affect the homogeneous composition of the exhaust gas. The temperature at the outlet of the chamber was 34 ℃~41℃. The major combustion products of the candle, such as such aldehydes and acids, contained oxygen. The mass specific emission rates of benzene, toluene, ethylbenzene, and TVOC were 0.04 μg/g, 0.01 μg/g, 0.02 μg/g, and 3.81, respectively. The mass specific emission rates of formaldehyde, acetaldehyde and benzaldehyde were 4.48 μg/g, 1.09 μg/g, and 0.67 μg/g, respectively. Considering the different compositions of the candle samples, their mass specific emission rates were similar to those obtained by using a large chamber 0.17 m3~50 m3 in size.