• Title/Summary/Keyword: flame retardants

Search Result 130, Processing Time 0.03 seconds

Flame Retardancy of Cellulose Fabrics Treated with 3-(Hydroxyphenyl Phosphinyl) Propanoic Acid

  • Zhang, Lianping;Kim, Sam-Soo;Lee, Jae-Woong
    • Textile Coloration and Finishing
    • /
    • v.20 no.5
    • /
    • pp.1-6
    • /
    • 2008
  • 3-(Hydroxyphenyl phosphinyl) propanoic acid (HPPA) has been one of the most commonly used durable flame retardant agents for polyethylene terephthalate (PET) for many years. We intended to explore the application of HPPA to cellulose fabrics as formaldehyde-free phosphorus based flame retardants (FRs) through green chemistry process. The flame retardancy of the flame-retardant treated cellulose fabrics were characterized by using inductively coupled plasma spectroscopy (ICP) and limiting oxygen index (LOI). Structural changes of the treated cellulose fabrics were carried out by thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy. To enhance the flame retardancy of HPPA treated cellulose fibers, glycerol polyglycidyl ether (GPE), a crosslinking agent was employed. Both HPPA and GPE treated cotton fabric imparted an LOI value over 26.

Toxicity of Organophosphorus Flame Retardants (OPFRs) and Their Mixtures in Aliivibrio fischeri and Human Hepatocyte HepG2 (인체 간세포주 HepG2 및 발광박테리아를 활용한 유기인계 난연제와 그 혼합물의 독성 스크리닝)

  • Sunmi Kim;Kyounghee Kang;Jiyun Kim;Minju Na;Jiwon Choi
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.2
    • /
    • pp.89-98
    • /
    • 2023
  • Background: Organophosphorus flame retardants (OPFRs) are a group of chemical substances used in building materials and plastic products to suppress or mitigate the combustion of materials. Although OPFRs are generally used in mixed form, information on their mixture toxicity is quite scarce. Objectives: This study aims to elucidate the toxicity and determine the types of interaction (e.g., synergistic, additive, and antagonistic effect) of OPFRs mixtures. Methods: Nine organophosphorus flame retardants, including TEHP (tris(2-ethylhexyl) phosphate) and TDCPP (tris(1,3-dichloro-2-propyl) phosphate), were selected based on indoor dust measurement data in South Korea. Nine OPFRs were exposed to the luminescent bacteria Aliivibrio fischeri for 30 minutes and the human hepatocyte cell line HepG2 for 48 hours. Chemicals with significant toxicity were only used for mixture toxicity tests in HepG2. In addition, the observed ECx values were compared with the predicted toxicity values in the CA (concentration addition) prediction model, and the MDR (model deviation ratio) was calculated to determine the type of interaction. Results: Only four chemicals showed significant toxicity in the luminescent bacteria assays. However, EC50 values were derived for seven out of nine OPFRs in the HepG2 assays. In the HepG2 assays, the highest to lowest EC50 were in the order of the molecular weight of the target chemicals. In the further mixture tests, most binary mixtures show additive interactions except for the two combinations that have TPhP (triphenyl phosphate), i.e., TPhP and TDCPP, and TPhP and TBOEP (tris(2-butoxyethyl) phosphate). Conclusions: Our data shows OPFR mixtures usually have additivity; however, more research is needed to find out the reason for the synergistic effect of TPhP. Also, the mixture experimental dataset can be used as a training and validation set for developing the mixture toxicity prediction model as a further step.

Thermal behavior of Flame Retardant Filled PLA-WF Bio-Composites

  • Choi, Seung-Woo;Lee, Byoung-Ho;Kim, Hyun-Joong;Kim, Hee-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.155-163
    • /
    • 2009
  • This study examined the thermal stability of PLA-WF bio-composites. Wood flour (WF)-filled PLA bio-composites were reinforced with the flame retardants, Melamine pyrophosphate (MPP), resorcinol bis (diphenyl phosphate) (RDP) and zinc borate (ZB). The flame retardant was compounded with PLA and natural biodegradable filler. The thermal properties of the biodegradable polymer and bio-composites reinforced with the flame retardant were measured and analyzed by DSC, DMA and TGA. The results showed that the flame retardant-reinforced biodegradable bio-composite exhibited improved thermal properties.

Flame Retardancy and Mechanical Property of Recycled Polyolefinic Plastic Composites with Hybrid fillers (폴리올레핀계 폐플라스틱/복합filler 성형체의 난연성 및 기계적 물성 연구)

  • 강영구;송종혁
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.56-63
    • /
    • 2003
  • Flame retardancy and mechanical properties of recycled polyolefinic plastics/inorganic filler composite systems were investigated by using several inorganic flame retardants such as magnesium hydroxide and slag powder generated electro arc furnace Compatibilizer user each maleic anhydride functionalized polyethylene (PE-g-MAH) and polypropylene(PP-g-MAH) or used mixture of these. The effect of polymeric compatibilizers on the properties of composites was studied by tensile and impact test, differential scanning calorimetry, in the changed fracture mechanism. The improved adhesion was particularly reflected in the mechanical properties. The flame retardancy of composites was examined by measuring limiting oxygen index(LOI, ASTM D2863), smoke density(ASTM D2843) and vertical burning test(UL94). Regarding the flame retardant effect, the EAF slag powder is behaving as synergists as they are only active in the presence of magnesium hydroxide.

Characteristics of LDPE resin film depending on RP contents (적인 함유량에 따른 LDPE 수지 film의 특성연구)

  • JO, Dong-Soo;Noh, Young-Tai;Park, Byung-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6655-6665
    • /
    • 2015
  • Due to tightened environmental regulations on halogen type flame retardants, the portions of those based on phosphorous compounds that are non-halogen type is rising. When producing functional film, the physical and thermal properties become distinctly different depending on the amount of Red-phosphorus(RP) addition which causes flame resistance. The physical properties of resin fall in big scale when too much flame retardants are added, and it is hard to be applied to functional films such as shrink or anticorrosive film. The purpose of this research is to study the effects on mechanical, physical, and other properties of RP-LDPE films by changing the RP-MB contents. The LDPE film used for this study was produced through blow-type injection molding. The flame resistance was VTM-0, and the tear resistance showed inverse trends of MD and TD. Contraction percentage showed no relationship with the amount of RP content, but the anti-corrosive property showed 0.05 % better result than the national anti-corrosion shrink film reliability standard.

Combustibility of Cellulose Insulation Treated with Boric acid-Borax-Aluminium sulfate Formulation (붕산-붕사-Aluminium sulfate 계 셀룰로오스 단열재의 연소특성 연구)

  • Kim, Hong;In, Se-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.4
    • /
    • pp.7-12
    • /
    • 1992
  • The smouldering combustibility of cellulose insulation treated with boric acid-borax-aluminium sulfate as combustion retardants are examined by cigarette ignition method and electrical cardrige heater method. The effectiveness of Aluminium sulfate as a third combustion are acceptable both smouldering resistance and flame resistance at 18% level of all examined formulation. As the proportion of Aluminium sulfate in the formulation was increased, the flame resistance of cellulose insulation was improved.

  • PDF

A Study on the Flame Retardant Properties of EPDM Rubber Mixed with Phosphorus and Halogen Compound (인 및 할로겐 함유 EPDM 고무 혼합물의 난연 특성에 관한 연구)

  • Choi, Seong Su;Im, Wan-Bin;Kim, Jin Hong;Park, Young-ae W.;Woo, Je-Wan
    • Elastomers and Composites
    • /
    • v.37 no.4
    • /
    • pp.224-233
    • /
    • 2002
  • This study has investigated the flame retardant properties of EPDM rubber with the addition of various flame retardants. Carbon black, stearic acid, zinc oxide cross-linking agent were mixed with EPDM rubber to produce the base rubber E0 without the addition of flame retardants. Phosphorus flame retardant Tricrecyl phosphate(TCP) was added to E0 in 0.5, 1, 1.5, 2 phr to make E1~E4 samples and red phosphorus was added in 3, 6, 9, 12 phr to make E5~E8 samples. A flame retardant of the bromine family Decabromodiphenyloxide(DBDPO), and a chlorinated paraffin retardant of the chlorine family was added to E0 in 3, 6, 9, 12 phr to make E9~E12 and E13~E16 samples, repectively. Basic physical properties such as tensile strength, tear strength and hardness were measured for all the rubber samples with various flame retardant additions. There was no substantial differences. On the other hand, Oxygen index and UL94 were measured to study flame retardant properties. From oxygen index measurements E0 sample showed a value of 23.5%, indicating the improvement of flame retardant properties. Also from UL94 measurements, it was found that addition of red phosphorus resulted in maximum flame retardant effect. It was found that increasing the amount of addition resulted in decreasing combustion rate and improving flame retardant effect regardless of the kind of flame retardant.

A Review on the Flammability and Flame Retardant Properties of Natural Fibers and Polymer Matrix Based Composites

  • Prabhakar, M.N.;Shah, Atta Ur Rehaman;Song, Jung-Il
    • Composites Research
    • /
    • v.28 no.2
    • /
    • pp.29-39
    • /
    • 2015
  • Natural fibers reinforced polymer composites are being used in several low strength applications. More research is going on to improve their mechanical and interface properties for structural applications. However, these composites have serious issues regarding flammability, which are not being focused broadly. A limited amount of literature has been published on the flame retardant techniques and flammability factor of natural fibers based polymer matrix composites. Therefore, it is needed to address the flammability properties of natural fibers based polymer composites to expand their application area. This paper summarizes some of the recent literature published on the subject of flammability and flame retardant methods applied to natural fibers reinforced polymer matrix composites. Different factors affecting the flammability, flame retardant solutions, mechanisms and characterization techniques have been discussed in detail.

Flame Retardant Property of PU by the Addition of Phosphorous Containing Polyurethane Oligomers (폴리우레탄을 인계화합물로 해중합한 올리고머의 난연성)

  • Jung, Sunyoung;Kang, Sungku;Cho, Ilsung;Koh, Sungho;Kim, Younhee;Chung, Yeongjin;Kim, Sangbum
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.376-380
    • /
    • 2007
  • Used polyurethane (PU) was chemically degraded by the treatment with flame retardants such as tris(1,3-chloro-2-propyl) phosphate (TCPP), triethyl phosphate (TEP), and trimethyl phosphate (TMP). Analysis of FT-IR and P-NMR showed that the degraded products (DEP) contained oligourethanes. Rigid polyurethane foam was produced using the DEP as flame retardants. The flammability and thermal stability of recycled rigid polyurethane were investigated. The mechanical properties such as compressive strength of recycled polyurethane were also studied. The recycled polyurethane reduced flammability and enhanced thermal stability over intrinsic polyurethane. Mechanical strength of recycled polyurethane also shows as high as that of intrinsic polyurethane. In order to evaluate flame retardant properties of the recycled polyurethane foams with various amounts of DEP, heat release rate (HRR) of the foam was measured by cone calorimeter. Scanning electron micrograph of recycled PU showed a uniform cell morphology as a intrinsic PU.

Comparative Analysis of Flame Retardant Performance of Japanese Cypress Plywood Based on the Main Ingredients of Fire Retardant Paint (도료의 주성분에 따른 편백 합판의 방염성능 비교 분석)

  • Soo-Hee Lim;Ha-Sung Kong
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.1
    • /
    • pp.61-66
    • /
    • 2023
  • The purpose of this study is to compare and analyze the flame retardant performance of Japanese cypress(Chamaecyparis obtusa) plywood, commonly used in indoor decoration, furniture, and tableware, by treating it with three different fire retardants with different primary ingredients. The experiment was conducted in compliance with Article 31, Paragraph 2 of the Enforcement Decree of the Fire Facilities Installation and Management Act and Articles 4 and 7-2 of the Flame Retardant Performance Standards. After flame time, after glow time, char length, and char area were measured. As a result, first, after flame time was measured at 0 seconds regardless of whether the flame retardant treatment was applied. Second, after glow time was relatively long, measuring 22.7 seconds without treatment, which is likely due to the weak fire resistance and high concentration of carbon monoxide generated by the chemical characteristics of the Japanese cypress itself. Third, it was confirmed that the effects of the primary ingredient, phosphorus, in the flame retardant treatment varied depending on the technological development of the manufacturers of the same species of Japanese cypress plywood. In the future, it is expected that the results of this study will provide fundamental data to select flame retardant treatments that show high flame retardant performance according to the botanical characteristics of the wood.