• Title/Summary/Keyword: flame retardant plywood

Search Result 16, Processing Time 0.028 seconds

Studies on Fire-Retardant-Treatment and Press Drying of Plywood (합판(合板)의 내화처리(耐火處理)와 열판건조(熱板乾燥)에 관(關)한 연구(硏究))

  • Lee, Phil-Woo;Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.5-37
    • /
    • 1982
  • Plywood used for construction as a decorative inner material is inflammable to bring large fire accidents and burn out human life and their properties. To diminish the fire disaster, fire retardant plywood has been required indeed. In the methods of manufacturing the fire retardant plywood the soaking method is occasionally used. However after soaking plywood into fire retardant chemical solutions, redrying of soaked plywood is the most important. In this study, 3.5mm thin and 5.0mm thick plywoods were selected for fire retardant treatment. Treating solutions were prepared for 20% dilute solutions of ammonium sulfate, monoammonium phosphate, diammonium phosphate, borax-boric acid and minalith, and water solution. 1-, 3-, 6-, and 9 hour-soaking treatments were applied and after treatments hot plate drying was applied to those treated plywoods at $90^{\circ}C$, $120^{\circ}C$ and $150^{\circ}C$, of press temperature. Drying rates, drying curves, water absorption rates of fire retardant chemicals, weight per volume and fire retardant degree of plywood were investigated. The results may be summarized as follows: 1. The plywoods treated with ammonium sulfate, monoammonium phosphate and diammonium phosphate and diammonium phosphate showed increase of chemical absorption rate with proportion to increase of treating time, but not in case of the plywood treated with borax-boric acid and minalith. 2. In the treatment of definite time, the absorption rate per unit of volume of plywood showed higher in thin plywood (thickness of 3.5mm) than in thick plywood (thickness of 5.0mm). In both thin and thick plywoods, the highest absorption rate was observed in 9 hour-treatment of ammonium sulfate. The value was 1.353kg/$(30cm)^3$ in thin plywood and 1.356kg/$(30cm)^3$ in thick plywood. 3. The volume per weight of plywood after chemical treatment increased remarkably and. after hot plate drying, the values were to a little extent higher than before chemical treatment. 4. The swelling rates of thickness in chemical-treated plywoods increased similarly with that of water-treated plywood in 1- and 3 hour-treatment of both thin and thick plywoods. But in 6- and 9 hour-treatment, the greater increased value showed in water-treated ply wood than any other chemical, especially in thick plywood. 5. The shrinkage rates after hot plate drying showed the same tendency as the swelling rate, and the rate showed the increasing tendency with proportion to increase of treating time in thick plywood of both chemical and water treatments. 6. Among drying curves, the curves of water-treated plywood placed more highly than chemical-treated plywood without-relation to thickness in 6- and 9 hour-treatment except in 1- and 3 hour-treatment. 7. The drying rate related to thickness of treated plywood, was twice above in thin plywood compared with thick plywood. 8. The drying rate remarkably increased with proportion to increase of the plate temperature and, the values were respectively 1.226%/min., 6.540%/min., 25.752%/min. in hot plate temperature of $90^{\circ}C$, $120^{\circ}C$, $150^{\circ}C$ in thin plywood and 0.550%/min., 2.490%/min, 8.187%/min, in hot plate temperature of $90^{\circ}C$, $120^{\circ}C$, $150^{\circ}C$ in thick plywood. 9. In the treatment at $120^{\circ}C$ of hot plate temperature, the drying rates of chemical-treated plywood showed the highest value in monoammonium phosphate of thin plywood and in diammonium phosphate of thick plywood. But the drying rate of water-treated plywood was highest in 6- and 9 hour-treatment. 10. The fire retardant degree of chemical-treated plywood was higher than that of the untreated plywood as shown in loss of weight, burning time, flame-exhausted time and carbonized area. 11. The fire-retardant effect among fire retardant chemicals were the greatest in diammonium phosphate, the next were in monoammonium phosphate and ammonium sulfate, and the weakest were in borax-boric and minalith.

  • PDF

Studies on Press Drying of Fire-Retardant Treated Plywood (내화처리합판(耐火處理合板)의 열판건조(熱板乾燥)에 관(關)한 연구(硏究))

  • Kim, Jong Man
    • Journal of Korean Society of Forest Science
    • /
    • v.56 no.1
    • /
    • pp.1-25
    • /
    • 1982
  • Plywood used for construction as a decorative inner material is inflammable and can cause fire accidents. causing destruction of human life and property. To diminish the fire disaster, fire retardant plywood is indeed required. In the methods of manufacturing the fire retardant plywood, a soaking method is occasionally used. However after soaking plywood into fire retardant chemical solutions redrying of soaked plywood is of the utmost importance. In this study 3.5mm and 5.0mm thickness plywoods were selected for fire retardant treatment. Treating solutions were prepared for 20% dilute solutions of ammonium sulfate, monoammonium phosphate, diammonium phosphate, borax-boric acid minalith, and water solution, 1-, 3-, 6-, and 9 hour-soaking treatments in borax-boric acid and minalith, and 6- and 9 hours in the other chemicals were applied and after the treatment hot drying was applied to treated plywoods at $90^{\circ}C$, $120^{\circ}C$ and $150^{\circ}C$ of press temperature. Drying rates, drying curves, water absorption rates of fire retardant chemicals, weight per volume and fire retardant degree of plywood were investigated. The results may be summarized as follows: 1) In the 9 hours-soaking treatment of fire retardants by hot and cold bath method, the chemical retentions of 3.5mm thickness plywood could be attained within the range ($1.125-2.25kg/(30cm)^3$) of minimum retention specification as follows: $1.353kg/(30cm)^3$ in monoammonium phosphate, $1.331kg/(30cm)^3$ in diammonium phosphate, $1.263kg/(30cm)^3$ in ammonium sulfate, $1.226kg/(30cm)^3$ in borax-boric acid. But the chemical retention, $0.906kg/(30cm)^3$, in minalith could not be attained within the range of minimum retention specification. And also in case of 5.0mm thickness plywood, chemical retentions, as $1.356kg/(30cm)^3$ and $1.166kg/(30cm)^3$ respectively, of ammonium sulfate and diammonium phosphate could be attained within the range minimum retention specification, but the other fire retardant chemicals could not. 2) In the 6- and - hours-soaking treatments of 3.5mm and 5.0mm thickness plywood, the drying curve sloped of chemical treated plywood was smaller than that of water treated. The drying rate related to thickness of treated plywood, was about three times as fast in 3.5mm thickness plywood compared with 5.0mm thickness plywood. 3) In the treatment at $120^{\circ}C$ of hot platen temperature, the drying rates of chemical-treated plywood showed the highest quantity in diammonium phosphate of 3.5mm and 5.0mm thickness plywood. But the drying rate of water treated plywood was highest during the 6- and 9 hours-soaking treatments. 4) The drying rate remarkably increased with proportion to increase of the platen temperature, and the values were respectively 1.23%/min., 6.54%/min., 25.75%/min. in hot platen temperature of $90^{\circ}C$, $120^{\circ}C$, $150^{\circ}C$ in 3.5mm thickness plywood and 0.55%.min., 2.49%/min., 8.19%/min. in hot platen temperature of $90^{\circ}C$, $120^{\circ}C$, $150^{\circ}C$ in 5.0mm thickness plywood. 5) In the fire retardant degree of chemical treated plywood, the loss in weight was the smallest in diammonium phosphate, next was in monoammonium phosphate and ammonium sulfate, and the greatest was in borax-boric acid and minalith. And the fire-retardant effect in burning time, flame-exhausted time and carbonized area were greatest in diammouniun phosphate, next were in monoammonium phosphate and ammonium sulfate, and the weakest were in borax-boric acid and minalith.

  • PDF

Study on the Performance Characteristics of Organic-Inorganic Hybrid Flame Retardants (유-무기 하이브리드 방염제의 성능특성에 관한 연구)

  • Cho, Kyeong-Rae;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.12-19
    • /
    • 2017
  • The present paper is a study on the performance characteristics of organic-inorganic hybrid flame retardants. MDF plywood has been used, that are being used for the interior decoration of building structures, to make the samples for experiment according to the existing or non-existing treatment of organic-inorganic hybrid flame resistants. Later, the experiment on the measurement of flame retardant performance using a $45^{\circ}$ flammability tester and the experiment on the measurement of combustion characteristic using a cone calorimeter have been proceeded to confirm the performance characteristic of organic-inorganic hybrid flame retardants. From the result of experiments, it has been confirmed that both organic-inorganic hybrid flame retardants have merits of inorganic and organic substances, and that heat resistance, durability and adhesiveness have been largely improved. The performance on the flame retardant has also appeared with excellent effect such as the reduced generation of combustion gas and the decreased generation of smoke.

A study on the problem of performance of fire retardant flame retardant treatment of plywood (목재합판의 방염처리방법에 따른 방염성능평가의 문제점에 관한 고찰)

  • Cha, Jeong-Min;Kim, In-Beom;Hyun, Seong-Ho
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.388-392
    • /
    • 2011
  • 화재 발생 시 연소확대 방지 및 이를 지연시켜 재실자의 피난시간을 확보하고자 실시하는 방염처리의 성능평가는 연소시험방법을 통해 잔염시간, 잔신시간, 탄화면적, 탄화길이가 일정기준에 적합하여야만 방염성능을 부여받게 되며 목재나 MDF와 같은 합판은 방염도료나 방염필름을 부착하여 사용하는 현장방염처리방법이 사용되고 있다. 따라서 본 연구에서는 시중에서 일반적으로 사용되고 있는 비방염 접착필름, 방염 필름, 방염 도료 등을 MDF 합판에 적용하여 방염처리 하였을 때의 연소특성 및 방염성능을 측정하였다.

  • PDF

A Comparative Study on the Effect of Fire Retardancy of the Plywood Treated by Ammonium Sulphate and Monoammonium Phosphate (황산암모늄과 제 1 암모늄처리(處理) 합판(合板)의 내화효과에 관(關)한 비교연구(比較硏究))

  • Lee, Phil-Woo;Kim, Cheol-San
    • Journal of the Korean Wood Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.23-30
    • /
    • 1983
  • This experiment was carried out for diminishing the material loss and the damage of human life due to the fire disaster by treating plywood with fire retardant chemical solution. At this study, we observed and measured chemical retention, burning point, maximum flame length, flame exausted time, carbonized area, and weight loss of plywood treated by each solution of ammonium sulphate [$(NH_4)_2SO_4$] and monoammonium phosphate [$NH_4H_2PO_4$]. Obtained results at the study may be summarized as follows: 1. In case of monoammonium phosphate-treated plywood, every tested item of fire retardancy was shown more excellent at the 25% chemical concentration and shown also at 9 hours treatment except maximum flame length compared with ammonium sulphate-treated plywood. 2. However in case of ammonium sulphate-treated plywood, 6 hours treatment of fire retardancy was better than 9 hours treating time. 3. Monoammonium phosphate was generally better than ammonium sulphate in every tested item.

  • PDF

Combustion Characteristics of Bamboo Charcoal Boards (대나무숯 성형보드의 연소특성)

  • Park, Sang-Bum;Park, Joo-Saeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.19-25
    • /
    • 2012
  • The fire retardant bamboo charcoal (BC) boards were manufactured for interior building materials in this study, The BC boards were manufactured by mixing and pressing of the bamboo charcoal, expanded vermiculite, and inorganic binder. The combustion behaviors of the BC boards were investigated using a cone calorimeter at an incident heat flux of 50 kW/$m^2$. Three building materials (plywood, BC board of Japan, and gypsum board) were used to observe the burning behaviors of weight loss, total heat release rate, and maximum heat release rate. Surface test and toxicity evaluation of the BC board were also conducted. The weight loss of the BC board (12.0%) was lower than the nonflammable gypsum board (15.6%) after burning of 10 min. Total heat release of the BC was 3 MJ/$m^2$ (KS standard 8 MJ/$m^2$) and total heat release rate of the BC was 20 kW/$m^2$ (KS standard 200 kW/$m^2$). Therefore, the BC boards were adjustable for the third-grade flame retardant building materials. External appearance change and mouse toxicity were not found in the BC boards after the combustion test.