• Title/Summary/Keyword: flame retardant coating

Search Result 35, Processing Time 0.021 seconds

Enhanced Flame Retardancy of Cotton Fabric by Functionalized Graphene Oxide and Ammonium Polyphosphate (기능성화 산화 그래핀과 폴리인산암모늄을 이용한 직물 난연성 향상)

  • Ka, Dongwon;Jang, Seongon;Jung, Hyunsook;Jin, Youngho
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.177-184
    • /
    • 2020
  • Flame retardant(FR) clothes prohibit additional fire diffusion and make the personnel do their tasks without a hitch in a flammable environment. The existing FR clothes, however, are heavy and give high thermal fatigue. Therefore, it is strongly demanded to develop a light, convenient, and eco-friendly clothes. Recently, many works have been reported to make FR fabrics with phosphorus compounds, but their performance could not satisfy the specified criteria in appraisal standards of domestic and American FR clothes or combat uniforms. In this paper, two kinds of phosphorus compounds were applied to cotton fabric. Graphene oxide functionalized with a phosphorus-rich deep eutectic solvent and ammonium polyphosphate were coated on cotton fabric by eco-friendly padding procedure. The coated fabrics were analyzed with thermogravimetric analysis, vertical flame resistance test(ASTM D6413), cone calorimeter test(ISO 5660-1), and method of test for limited flame spread(ISO 15025). It was revealed that the as-made cotton with those two materials simultaneously had better flame resistance than the cottons with each one. Furthermore, an additional coating for hydrophobicity on the FR cotton was tried for better washing fastness.

Thermal resistance effect of graphene doped zinc oxide nanocomposite in fire retardant epoxy coatings

  • Rao, Tentu Nageswara;Hussain, Imad;Riyazuddin, Riyazuddin;Koo, Bon Heun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.4
    • /
    • pp.411-417
    • /
    • 2019
  • Graphene doped zinc oxide nanoparticles (G-ZnO) were prepared using modified hummer's technique together with the ultrasonic method and characterized by field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), fourier-transform infrared spectroscopy (FTIR) and high-resolution transmission electron microscopy (HRTEM). Different samples of epoxy resin nanocomposites reinforced with G-ZnO nanoparticles were prepared and were marked as F1 (without adding nanoparticles), F2 (1% w/w G-ZnO), and F3 (2% w/w G-ZnO) in combination of ≈ 56:18:18:8w/w% with epoxy resin/hardener, ammonium polyphosphate, boric acid, and Chitosan. The peak heat release rate (PHRR) of the epoxy nanocomposites was observed to decrease dramatically with the increasing G-ZnO nanoparticles. However, the LOI values increased significantly with the increase in wt % of G-ZnO nanoparticles. From the UL-94V data, it was confirmed that the F2 and F3 samples passed the flame test and were rated as V-0. The results obtained in the present work clearly revealed that the synthesized samples can be used as efficient materials in fire-retardant coating technology.

Physical Properties of Water Dispersion Polyurethane Resin Based on Ammonium Poly Phosphate and HMDI (폴리인산 암모늄과 HMDI 기반으로 제조된 수분산 폴리우레탄 수지의 물리적 특성 연구)

  • Lee, Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1619-1626
    • /
    • 2020
  • In this study, the physical properties of water-dispersible polyurethane resins synthesized with polyammonium phosphate and HMDI were studied by coating film samples and full-grain surfaces. Solvent resistance was found to be unchanged in all samples, and in terms of tensile strength, DPU-AP3 (1.887 kgf/㎟) containing the most ammonium polyphosphate showed the lowest physical properties. The elongation rate was measured as 54 8% in the sample containing a large amount of ammonium polyphosphate. Abrasion resistance was measured as 548 mg.loss of a sample containing a lot of ammonium polyphosphate, and it was confirmed that the physical properties of the blended resin of ammonium polyphosphate and water-dispersible polyurethane were changed.

Characteristics of Recycled m-Aramid and TPP Complex Solutions in Preparation and Cotton Fibers after Coating (재활용 메타 아라미드와 TPP 복합용액의 제조 및 면섬유 코팅 후 특성분석)

  • Kim, Sam Soo;Lee, Ji Min;Cho, Ho Hyun;Ryoo, Kyu Yul
    • Textile Coloration and Finishing
    • /
    • v.25 no.4
    • /
    • pp.292-302
    • /
    • 2013
  • Cotton fabrics treated with hybrid materials were developed and prepared. A halogen-free flame retardant and an aromatic amide were blended and applied to cotton fabrics. Thermal and physical properties of the treated cotton fabrics were investigated. The surface of the pure and coated cotton fabrics was characterized by Fourier transform infrared spectroscopy. The elemental composition of the coated surface of the cotton fabric was measured using X-ray photoelectron spectroscopy and compared with that of pure cotton fabric. After being solved in N,N-dimethylacetamide, m-aramid and triphenylphosphine oxide (TPP) were applied to cotton fabrics through a dip-pad-coagulation process. The treated cotton fabrics with recycled m-aramid/TPP resulted in increased limited oxygen index values and thermal resistance.

The Korea Academia-Industrial cooperation Society (유리섬유 복합재료를 이용한 화재 비상통로용 스크린 소재 성능에 관한 연구)

  • Lee, Jung-Yub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.653-659
    • /
    • 2018
  • High-rise buildings and complex facilities are a representative urban system for the masses, and it requires an increasing role of commodity and safety. Smoke and toxic gasses can cause accidents due to fire in these systems. The purpose of this study is to develop a fiber screen material for emergency evacuation passages that can be avoided quickly and safely in cases of disasters. The fiber screen material is applicable to folding devices for emergency evacuation passages. The material is different from general steel material in that it is lightweight with less burden during storage for a long time in a roll form in a folding device. It also has an excellent secondary function in that it is less affected by radiant heat. Three kinds of fiber screen materials were selected that have good flame retardancy and post-processing characteristics. A performance evaluation was performed by a heat shrinkage test, contact heat test, combustibility test, flame retardancy test, tensile strength test, and tear strength test. As a result, the lightweight fabric shows excellent performance through post-processing, and silicone resin coating can secure safety of the pizza by the fiber screen material performance and radiant heat. The optimum post-treatment conditions were evaluated by performing a burning test after coating two kinds of glass fibers and four types of flame-retardant silicone resins with different weight and thickness.