• Title/Summary/Keyword: flame luminosity

Search Result 20, Processing Time 0.022 seconds

Experiment on the Characteristics of Jet Diffusion Flames with High Temperature Air Combustion (고온공기를 이용한 제트확산화염의 연소특성에 관한 실험)

  • Cho, Eun-Seong;Ohno, Ken;Kobayashi, Hideaki;Chung, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.359-364
    • /
    • 2004
  • For the development of high efficiency and low emission combustion systems, high temperature air combustion technology has been tested by utilizing preheated air over 1100 K and exhaust gas recirculation. In this system, combustion air is diluted with large amount of recirculated exhaust gases, such that the oxygen concentration is relatively low in the reaction zone, leading to low flame temperature. Since, the temperature fluctuations and sound emissions from the flame are small and flame luminosity is low, the combustion mode is expected to be flameless or mild combustion. Experiment was performed to investigate the turbulent flame structure and NO$_x$ emission characteristics in the high temperature air combustion focused on coflowing jet diffusion flames which has a fundamental structure of many practical combustion systems. The effect of turbulence has also been evaluated by installing perforated plate in the oxidizer inlet nozzle. LPG was used as a fuel. Results showed that even though NO$_x$ emission is sensitive to the combustion air temperature, the present high temperature air combustion system produce low NO$_x$ emission because it is operated in low oxygen concentration condition by the high exhaust gas recirculation.

A Study on the Mixed Fuel Characterization (혼합연료의 특성에 관한 연구)

  • 한규일
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.3
    • /
    • pp.288-294
    • /
    • 1990
  • Two pure fuel oils(#1 oil, #6 oil), theree pure alcohols (methanol, ethanol, propanol) were tested for the fuel characteristics such as miscibility (that established which pure fuels and fuel mixtures could be fired in the boiler), flash point, viscosity. Specific target of the study besides the oil/alcohols or oil/alcohol mixture without any modification and with safety. #1 oil could be mixed without any problems at all concentrations with two of the alcohols; these were the ethanol and propanol. However, miscibility of #6 oil with any alcohols and #1 oil with methanol was not possible and very limited in this study. The measurements of flash point and viscosity for the mixtures were done for the comparisons with the pure fuels. There was a marked change of flame shape and flame luminosity as the alcohol content of the mixtures was increased. The mixture flame shortened and became non-luminous compared with a pure fuel oil flame.

  • PDF

An Experimental Study of the Characteristics with High Temperature Air Combustion in Jet Diffusion Flames (제트확산염의 고온공기연소특성에 관한 실험적 연구)

  • Cho, Eun-Seong;Ohno, Ken;Kobayashi, Hideaki;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.89-94
    • /
    • 2003
  • For the development of high efficiency and low emission combustion systems, high temperature air combustion technology has been tested by utilizing preheated air over 1100 K and exhaust gas recirculation. In this system, combustion air is diluted with large amount of exhaust gases ($N_2$, $CO_2$), such that the oxygen concentration is relatively low in the reaction zone, leading to low flame temperature. Since, the temperature fluctuations and sound emissions form the flame are small and flame luminosity is low, the combustion mode is expected to be flameless or mild combustion. Experiment was performed to investigate the turbulent flame structure and $NO_X$ emission characteristics in the high temperature air combustion focused on coflowing jet diffusion flames which has a fundamental structure of many practical combustion systems. The effect of turbulence has also been evaluated by installing perforated plate in the oxidizer inlet nozzle. LPG was used as a fuel. Results showed that even though $NO_X$ emission is sensitive to the combustion air temperature, the present high temperature air combustion system produce low $NO_X$ emission because it is operated in low oxygen concentration condition in excess of dilution.

  • PDF

Experimental Study on the Characteristics of Lifted Flames in Laminar Coflow Jets of Propane (층류 프로판 동축류 제트에서 부상화염의 특성에 관한 실험적 연구)

  • Lee, J.;Won, S.H.;Jin, S.H.;Chung, S.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.3
    • /
    • pp.37-46
    • /
    • 2002
  • Characteristics of lifted flames in axisymmetric laminar coflow jets have been investigated experimentally. Approximate solutions for velocity and concentration accounting virtual origins have been proposed for coflow jets to analyze the behavior of liftoff height. From the measurement of Rayleigh intensity for probing the concentration field of propane, the validity of the approximate solutions was substantiated. From the images of OH PLIF and CH chemiluminescence and the Rayleigh concentration measurement, it has been shown that the positions of maximum luminosity in direct photography coincide with the tribrachial points, which were located along the stoichiometric contour. The liftoff height in coflow jets was found to increase highly nonlinearly with jet velocity and was sensitive to coflow velocity.

  • PDF

Spray and Flame Characteristics of Waste Cooking Oil Biodiesel and Diesel in a Compression Ignition Diesel Engine Using In-cylinder Visualization (가시화 엔진을 이용한 직접 분사식 압축착화 디젤엔진에서 폐식용유 바이오디젤과 디젤의 분무 및 화염 특성 비교)

  • Hwang, Joonsik;Bae, Choongsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.105-113
    • /
    • 2014
  • Spray and combustion process with waste cooking oil (WCO) biodiesel and commercial diesel were analyzed in an optically-accessible single-cylinder compression ignition diesel engine equipped with a high pressure common-rail injection system. Direct imaging method was applied to investigate spray and combustion characteristics. From the mie-scattering results, it was verified that WCO biodiesel had a longer injection delay compared to diesel. Spray tip penetration length of WCO biodiesel was longer and spray angle was narrower than those of diesel due to poor atomization characteristics. In terms of combustion, WCO biodiesel showed later start of combustion, while flame was vanished more rapidly. Analysis of flame luminosity showed that WCO biodiesel combustion had lower intensity and lasted for shorter duration.

Understanding Pollutant Emission in a Heavy-Duty Diesel Engine with JP-8 and Diesel (대형 디젤 엔진에서 JP-8 과 디젤 적용 시의 배기 배출물 특성에 대한 이해)

  • Lee, Jin-Woo;Bae, Choong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1375-1381
    • /
    • 2011
  • Combustion processes in an optically-accessible single-cylinder heavy-duty diesel engine equipped with a highpressure common-rail injection system were investigated for JP-8 and diesel. Direct imaging and two-color thermometry were employed to verify the emission trend for both fuels. The combustion process was characterized by image analysis with focus on luminosity. The results of two-color thermometry were analyzed on the basis of the flame temperature and KL factor distribution. Analysis of the combustion process by direct imaging showed that the ignition delay was longer for JP-8 than for diesel, while the flame was extinguished rapidly. Analysis of the flame luminosity showed that the combustion intensity was higher for diesel and that the flame lasted for a longer duration in this case. Two-color thermometry results showed that the high-temperature region extended over a large area during JP-8 combustion, implying the formation of a large amount of $NO_x$. In addition, the KL factor showed low level over a large area and relatively homogeneous in the case of JP-8 combustion, which implied that less smoke was produced when using this fuel.

An Experimental Study on the Extinction Limit Extension of Unsteady Counterflow Diffusion Flames (비정상 대향류 확산 화염의 소화 한계 확장에 대한 실험적 연구)

  • Lee Uen Do;Lee Ki Ho;Oh Kwang Chul;Lee Eui Ju;Shin Hyun Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.390-401
    • /
    • 2005
  • In this study, extinction limit extension of unsteady $(CH_{4}+N_{2})$/air diffusion flames was investigated experimentally. A spatially locked flame in an opposing jet burner was perturbed by linear velocity variation, and time-dependent flame luminosity, transient maximum flame temperature and OH radical were measured over time with the high speed camera, Rayleigh scattering method and OH laser-induced fluorescence, respectively. Unsteady flames survive at strain rates that are much higher than the extinction limit of steady flames, and unsteady extinction limits extend as the slope of the strain rate increases or the initial strain rate decreases. We verified the validity of the equivalent strain rate concept by comparing the course of unsteady extinction process and steady extinction process, and it was found that the equivalent strain rate concept represents well the unsteady effect of a convective-diffusive zone. To investigate the reason of the unsteady extinction limit extension, we subtracted the time lag of the convective-diffusive zone by using the equivalent strain concept. Then the modified unsteady extinction limits become smaller than the original unsteady extinction limits, however, the modified unsteady extinction limits are still larger than the steady extinction limits. These results suggest that there exist the unsteady behavior of a diffusive-reactive zone near the extinction limit due to the chemical non-equilibrium states associated with unsteady flames.

Flame Interaction with Shear Layer Flow in the Post Chamber of Hybrid Rocket (하이브리드 로켓 후연소실 전단유동과 연소반응의 상호 간섭)

  • Moon, Young Joo;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.585-592
    • /
    • 2016
  • Visualization was done by using $CH^*$ chemiluminescence images and PMT measurements in order to understand the origin of fluctuating pressure and chemical luminosity at about 500 Hz frequency even in stable combustion, which was observed in recent experimental tests, and to find the physical correlation leading to Low Frequency Instability(LFI) in terms of phase angle. In stable combustion, chemical reactions are distributed along the shear layer flow showing a negative coupling(about 180 degree in phase angle) with combustion pressure. However, phase difference is shifted to a positive coupling showing less than 90 degree in unstable case. Also a periodic change in the distribution of chemical reactions is observed along with local flame extinction and the appearance of big scale vortex flow. In the transition to LFI, local flame extinction and small vortex flow start to appear in a row. As seen in the bluff body wake in reactive flow, the periodic appearance of vortex flow seems to share the same physical process of BVK(Bernard Von Karman) instability generation. Thus, the appearance of local extinction in 500 Hz fluctuations is gradually amplified to complete extinctions of about 20 Hz, and it leads into LFI.

COMBUSTION VISUALIZATION AND EMISSIONS OF A DIRECT INJECTION COMPRESSION IGNITION ENGINE FUELED WITH BIO-DIESOHOL

  • LU X.;HUANG Z.;ZHANG W.;LI D.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.15-21
    • /
    • 2005
  • The purpose of this paper is to experimentally investigate the engine pollutant emissions and combustion characteristics of diesel engine fueled with ethanol-diesel blended fuel (bio-diesohol). The experiments were performed on a single-cylinder DI diesel engine. Two blend fuels were consisted of $15\%$ ethanol, $83.5\%$ diesel and $1.5\%$ solublizer (by volume) were evaluated: one without cetane improver (E15-D) and one with a cetane improver (E15-D+CN improver). The engine performance parameters and emissions including fuel consumption, exhaust temperature, lubricating oil temperature, Bosch smoke number, CO, NOx, and THC were measured, and compared to the baseline diesel fuel. In order to gain insight into the combustion characteristics of bio-diesohol blends, the engine combustion processes for blended fuels and diesel fuel were observed using an Engine Video System (AVL 513). The results showed that the brake specific fuel consumption (BSFC) increased at overall engine operating conditions, but it is worth noting that the brake thermal efficiency (BTE) increased by up to $1-2.3\%$ with two blends when compared to diesel fuel. It is found that the engine fueled with ethanol-diesel blend fuels has higher emissions of THC, lower emissions of CO, NOx, and smoke. And the results also indicated that the cetane improver has positive effects on CO and NOx emissions, but negative effect on THC emission. Based on engine combustion visualization, it is found that ignition delay increased, combustion duration and the luminosity of flame decreased for the diesohol blends. The combustion is improved when the CN improver was added to the blend fuel.

Improment of Diesel Combustion using multiple injection under Cold Start Condition (냉시동 조건에서 디젤 연소 특성 및 연소 개선에 대한 연구)

  • Lee, Haeng-Soo;Lee, Jin-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.711-717
    • /
    • 2017
  • Startability and harmful emissions are the main issues in diesel engine development under cold conditions. The characteristics of combustion with multiple injection were investigated under cold start conditions. For quantitative analysis, the in-chamber pressure profile was measured and combustion visualization using direct imaging was accomplished. With multiple injection, the peak in-chamber pressure and heat release rate were increased compared to single injection. In addition, the period of flame luminosity detection was shortened using multiple injection. Combustion by main injection was improved with an increase in heat released by pilot combustion when the pilot injection quantity was increased. Finally, an increase in injection pressure also showed the possibility of combustion improvement. On the other hand, an increase of in the pilot injection quantity and injection pressure can cause an increase in harmful emissions, such as HC and CO due to wall wetting. Therefore, more sensitive calibration will be needed when applying a multiple injection strategy under cold start conditions.