KSII Transactions on Internet and Information Systems (TIIS)
/
제8권10호
/
pp.3475-3489
/
2014
Here we present a simple flame detection method for an infrared (IR) thermal camera based real-time fire surveillance digital signal processor (DSP) system. Infrared thermal cameras are especially advantageous for unattended fire surveillance. All-weather monitoring is possible, regardless of illumination and climate conditions, and the data quantity to be processed is one-third that of color videos. Conventional IR camera-based fire detection methods used mainly pixel-based temporal correlation functions. In the temporal correlation function-based methods, temporal changes in pixel intensity generated by the irregular motion and spreading of the flame pixels are measured using correlation functions. The correlation values of non-flame regions are uniform, but the flame regions have irregular temporal correlation values. To satisfy the requirement of early detection, all fire detection techniques should be practically applied within a very short period of time. The conventional pixel-based correlation function is computationally intensive. In this paper, we propose an IR camera-based simple flame detection algorithm optimized with a compact embedded DSP system to achieve early detection. To reduce the computational load, block-based calculations are used to select the candidate flame region and measure the temporal motion of flames. These functions are used together to obtain the early flame detection algorithm. The proposed simple algorithm was tested to verify the required function and performance in real-time using IR test videos and a real-time DSP system. The findings indicated that the system detected the flames within 5 to 20 seconds, and had a correct flame detection ratio of 100% with an acceptable false detection ratio in video sequence level.
본 논문에서는 불꽃 감지를 위한 임베디드 시스템에 적합한 딥러닝 구조를 제안한다. 제안하는 딥러닝 구조의 불꽃 감지 과정은 불꽃 색깔 모델을 사용한 불꽃 영역 검출, 불꽃 색깔 특화 딥러닝 구조를 사용한 불꽃 영상 분류, 검출된 불꽃 영역의 $N{\times}N$ 셀 분리, 불꽃 모양 특화 딥러닝 구조를 사용한 불꽃 영상 분류 등의 4가지 과정으로 구성된다. 첫 번째로 입력 영상에서 불꽃의 색만을 추출한 다음 레이블링하여 불꽃 영역을 검출한다. 두 번째로 검출된 불꽃 영역을 불꽃 색깔에 특화 학습된 딥러닝 구조의 입력으로 넣고, 출력단의 불꽃 클래스 확률이 75% 이상에서만 불꽃 영상으로 분류한다. 세 번째로 앞 단에서 75% 미만 불꽃 영상으로 분류된 영상들의 검출된 불꽃 영역을 $N{\times}N$ 단위로 분할한다. 네 번째로 $N{\times}N$ 단위로 분할된 작은 셀들을 불꽃의 모양에 특화 학습된 딥러닝 구조의 입력으로 넣고, 각 셀의 불꽃 여부를 판단하여 50% 이상의 셀들이 불꽃 영상으로 분류될 경우에 불꽃 영상으로 분류한다. 제안된 딥러닝 구조의 성능을 평가하기 위하여 ImageNet의 불꽃 데이터베이스를 사용하여 실험하였다. 실험 결과, 제안하는 딥러닝 구조는 기존의 딥러닝 구조보다 평균 29.86% 낮은 리소스 점유율과 8초 빠른 불꽃 감지 시간을 나타내었다. 불꽃 검출률은 기존의 딥러닝 구조와 비교하여 평균 0.95% 낮은 결과를 나타내었으나, 이는 임베디드 시스템에 적용하기 위해 딥러닝 구조를 가볍게 구성한데서 나온 결과이다. 따라서 본 논문에서 제안하는 불꽃 감지를 위한 딥러닝 구조는 임베디드 시스템 적용에 적합함이 입증되었다.
본 논문에서는 감시 카메라를 통해 입력된 영상 정보로 연기와 화염을 실시간 검출하는 알고리즘을 제안한다. 산불은 막대한 인명, 재산피해를 불러오기 때문에 조기 감지에 따른 초기 진화가 매우 중요하다. 제안하는 산불 감시 알고리즘은 화염 감지와 연기 감지로 나뉘는데, 화염 감지는 단일 프레임에서 YCbCr 컬러 모델에서의 조건 검사를 통하여 화염을 검출한다. 연기 감지를 위해서는 먼저 현재 영상과 인접한 프레임들의 평균 영상사이의 차를 가중치로 이용하여 배경 범위를 설정하고, 이 범위를 벗어나면서 회색조를 갖는 픽셀만을 연기영역으로 검출한다. 제안하는 화염 감지 알고리즘은 기존의 알고리즘보다 일조량에 따른 조도의 변화에 강건하고, 연기 검출 알고리즘은 단위 시간동안의 변화량을 고려하여 회색조의 픽셀만을 연기로 감지하기 때문에 효과적인 조기 산불 탐지가 가능하다. 실험 결과는 제안하는 산불 감시 알고리즘이 기존의 알고리즘보다 우수한 성능을 나타냄을 보여준다.
To reduce the personnel and material loss caused by fire, we propose the automatic fire extinguishing system based on the ignition point tracking using the flame detecter. This automatic fire extinguishing system is composed of the flame detecting system and the fire extinguishing system based on the water cannon. We study the method for the ignition point tracking and the automatic fire extinguishing using the water cannon and the flame detecter. The flame detecting system for the early fire detection and the ignition point tracking has to be satisfied the requirement of the detecting range and the flame detection time. So we study the signal process algorithm for an improvement of the flame detecting system.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권5호
/
pp.2156-2170
/
2020
This paper presents a fire detection algorithm with a minimal false detection rate, intended for a thermal imaging surveillance environment, whose properties vary depending on temporal conditions of day or night and environmental changes. This algorithm was designed to minimize the false detection alarm rate while ensuring a high detection rate, as required in fire detection applications. It was necessary to reduce false fire detections due to non-flame elements occurring when existing fixed threshold-based fire detection methods were applied. To this end, adaptive flame thresholds that varied depending on the characteristics of input images, as well as the center of gravity of the heat-source and hot-source regions, were analyzed in an attempt to minimize such non-flame elements in the phase of selecting flame candidate blocks. Also, to remove any false detection elements caused by camera shaking, one of the most frequently raised issues at outdoor sites, preliminary decision thresholds were adaptively set to the motion pixel ratio of input images to maximize the accuracy of the preliminary decision. Finally, in addition to the preliminary decision results, the texture correlation and intensity of the flame candidate blocks were averaged for a specific period of time and tested for their conformity with the fire decision conditions before making the final decision. To verify the fire detection performance of the proposed algorithm, a total of ten test videos were subjected to computer simulation. As a result, the fire detection accuracy of the proposed algorithm was determined to be 94.24%, with minimum false detection, demonstrating its improved performance and practicality compared to previous fixed threshold-based algorithms.
Lim, Sung-Mook;Jung, Ki-Chang;Kim, Eung-Sik;Kim, Hong
한국화재소방학회:학술대회논문집
/
한국화재소방학회 1997년도 International Symposium on Fire Science and Technology
/
pp.590-597
/
1997
In this work, a new type of UV flame detection system was developed. In order to measure the performance of UV flame detector, various kinds of experiments was performed. The results show that the maximum response time of the UV flame detector is 0.2 seconds when the detection distance is one meter The advantages of this system include wide area, high speed response and high sensitivity. After testing the W flame detector in engine compartment it detected fire within 0.09 seconds and extinguished within 5 seconds. Hence, the UV flame detector can be applied in automatic fire suppression system for automobiles.
시대가 발전함에 따라 초고층 건물들이 도처에 세워지고 밀집되어 있다. 이러한 건물에 화재가 발생되면 발화지점 근처로 불이번지면서 대형화재의 위험성이 높아지고 이에 따른 인명 및 재산 피해가 증가한다. 따라서 이런 대형화재를 예방하고 피해를 최소화하기 위해서 화재를 미연에 감지하는 화재감지 기술에 대한 필요성이 높아지고 있다. 화재를 감지하기 위해 열감지기, 연기감지기, 불꽃감지기 등을 사용하는 방법이 있으나 본 논문에서는 감시 카메라에서 들어오는 입력 영상을 분석하여 화염과 연기를 초기에 감지하는 화재감지 시스템의 최근 연구 동향을 알아보고자 한다. 또한 이러한 화염과 연기 감지 알고리즘들을 다양한 형태의 동영상을 이용하여 구현 및 성능을 평가하였다.
본 논문은 기존의 센서 기반 화재 감지기가 넓은 장소와 개방된 공간에서 성능이 저하되는 단점을 보완하기 위하여 카메라 영상을 이용한 화재 불꽃 감지 알고리즘을 제안한다. 기존의 연구에서는 다수의 휴리스틱한 정보를 이용하거나 속도가 느린 문제점을 보여주었다. 이를 해결하기 위하여, 통계적인 값들을 사용했으며 속도를 개선하기 위해 블록 단위로 처리하였다. 먼저 입력된 영상에서 배경 모델과 불꽃 색상 모델 을 이용하여 화재 후보 영역을 추출한다. 그 후 후보 블록에 대하여 시간축 상에서의 명도 변화, 웨이블릿 계수 변화, 모션 변화를 추출하여 확 률 모델을 생성하며, 생성된 모델들을 퍼지 로직의 멤버십 함수로 사용하였다. 마지막으로 역퍼지(defuzzification) 과정을 통해 최종 결과 함수를 생성하고 이로부터 불꽃 발생 확률값을 예측하였다. 실험에서는 제안한 화재 불꽃 감지 알고리즘을 성능이 가장 좋다고 알려진 Toreyin의 알고리즘과 비교하여 성능이 개선되었음을 보여주고 있다.
UV 화염감기의 분진분위기에서의 성능저하를 고찰하기 위하여 세제분말, 탄진 및 분말 소화약제의 분진운을 형성하였고 LPG 및 가솔린 화염을 사용하여 UV 화염감지기의 감지성능을 고찰하였다. 분진 분위기 하에서의 UV 화염감지기의 성능을 분진의 농도와 분진층의 거리가 증가함에 따라 뚜렷한 증가를 보였으며, 분진의 화학적, 물리적 특성에 커다란 영향을 받았다. 따라서 UV 화염감지기를 분진 분위기에서 사용한 경우 특별한 주의를 기울일 필요가 있는 것으로 사려된다.
본 논문에서는 고화질 IP 카메라로부터 입력되는 영상으로부터 실시간으로 화염을 검출할 수 있는 시스템을 제안한다. 먼저 FFmpeg 라이브러리를 이용하여 비디오 파일을 오픈하는 것처럼 IP 카메라로부터 전송되는 RTSP 스트림을 직접 오픈한다. 두 번째는 입력영상으로부터 혼합 가우시안 모델을 이용하여 배경영상을 추출한다. 그 다음에는 입력 영상과 배경영상간의 차신호로부터 전경영상을 구한다. 분리된 전경영상은 수학적 모폴로지 연산을 거쳐 후보영역으로 간주한다. 후보영역의 색정보와 화염의 동적 특성을 분석하여 최종적으로 화염을 검출한다. 실험 결과를 통하여 제안하는 방법이 화염을 검출하는 데 효과적인 것을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.