• Title/Summary/Keyword: fixed point results

Search Result 1,099, Processing Time 0.025 seconds

APPROXIMATION OF SOLUTIONS THROUGH THE FIBONACCI WAVELETS AND MEASURE OF NONCOMPACTNESS TO NONLINEAR VOLTERRA-FREDHOLM FRACTIONAL INTEGRAL EQUATIONS

  • Supriya Kumar Paul;Lakshmi Narayan Mishra
    • Korean Journal of Mathematics
    • /
    • v.32 no.1
    • /
    • pp.137-162
    • /
    • 2024
  • This paper consists of two significant aims. The first aim of this paper is to establish the criteria for the existence of solutions to nonlinear Volterra-Fredholm (V-F) fractional integral equations on [0, L], where 0 < L < ∞. The fractional integral is described here in the sense of the Katugampola fractional integral of order λ > 0 and with the parameter β > 0. The concepts of the fixed point theorem and the measure of noncompactness are used as the main tools to prove the existence of solutions. The second aim of this paper is to introduce a computational method to obtain approximate numerical solutions to the considered problem. This method is based on the Fibonacci wavelets with collocation technique. Besides, the results of the error analysis and discussions of the accuracy of the solutions are also presented. To the best knowledge of the authors, this is the first computational method for this generalized problem to obtain approximate solutions. Finally, two examples are discussed with the computational tables and convergence graphs to interpret the efficiency and applicability of the presented method.

GCP Placement Methods for Improving the Accuracy of Shoreline Extraction in Coastal Video Monitoring

  • Changyul Lee;Kideok Do;Inho Kim;Sungyeol Chang
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.174-186
    • /
    • 2024
  • In coastal video monitoring, the direct linear transform (DLT) method with ground control points (GCPs) is commonly used for geo-rectification. However, current practices often overlook the impact of GCP quantity, arrangement, and the geographical characteristics of beaches. To address this, we designed scenarios at Chuam Beach to evaluate how factors such as the distance from the camera to GCPs, the number of GCPs, and the height of each point affect the DLT method. Accuracy was assessed by calculating the root mean square error of the distance errors between the actual GCP coordinates and the image coordinates for each setting. This analysis aims to propose an optimal GCP placement method. Our results show that placing GCPs within 200 m of the camera ensures high accuracy with few points, whereas positioning them at strategic heights enhances shoreline extraction. However, since only fixed cameras were used in this study, factors like varying heights, orientations, and resolutions could not be considered. Based on data from a single location, we propose an optimal method for GCP placement that takes into account distance, number, and height using the DLT method.

Is Male Professional Golfers' 10.94 m Putting Motion a Pendulum Motion? From a Point of View of the Location of the Center of Putter Head Rotation (퍼터헤드 회전중심점 위치 관점에서 본 남자프로골퍼의 10.94 m 퍼팅동작의 진자운동 여부)

  • Park, Young-Hoon;Youm, Chang-Hong;Seo, Kuk-Woong
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.217-226
    • /
    • 2007
  • Putting score counts about 43 % of the golf score. The dominant idea of the putting motion to amateur golfers as well as to many professional golfers is a pendulum-like motion. If a golfer's putting stroke motion is a pendulum-like motion, the putting motion should be straight-back-and-through, the same backswing, downswing, and follow through length and period, and a swing with a fixed hinge joint. If the putting motions of the human are different from the pendulum motion, there could be confusion in understanding and teaching golf putting. The purpose of this study was to examine the center of rotation(COR) of the putter head to reveal whether professional golfers really putt like a pendulum. Thirteen male professional golfers were recruited for the study. Each golfers executed 10.94 m putts six times on an artificial grass mat. Putter head position data were collected through a 60 Hz three-dimensional motion analysis system and low pass filtered with cut-off frequency of 6 Hz. COR of the putter head was mathematically acquired. Each golfer's last five putting motions were considered. The results show that the COR of the putter head was neither fixed nor located inside of the golfer. The medio-lateral directional component of the COR of the putter head fluctuated in the range of 10 cm during downswing and follow through. The anterior-posterior directional component of the COR of the putter head was fixed from the beginning of the downswing through impact. Just after impact, however, it moved to the target up to 60 cm. The superior-inferior directional component of COR of the putter head moved in a superior direction with the beginning of the downswing and showed peak height just prior to impact. During the follow through, it moved back in an inferior direction. The height-normalized peak value of the COR of the putter head was $1.4{\pm}0.3$ height. Technically speaking, male professional golfers' 10.94 m putting motion is not a pendulum-like motion. The dominating idea of a pendulum-like motion in putting might come from the image of the flawless, smooth motion of a pendulum.

FINITE ELEMENT ANALYSIS OF MANDIBULAR STRESSES AND DENTURE MOVEMENTS INDUCED BY OVERDENTURES (Overdenture 하에서 하악응력 및 의치의 변위에 관한 유한요소법적 분석)

  • Kim, Joung-Hee;Chung, Chae-Heon;Cho, Kyu-Zong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.28 no.1
    • /
    • pp.63-94
    • /
    • 1990
  • The purpose of this study was to analyze the displacement and the magnitude and the mode of distribution of the stresses in the lower overdenture, the mucous membrane, the abutment tooth and the mandibular supporting bone when various denture base materials, such as acrylic resin and 0.5mm metal base, and various denture base designs were subjected to different loading schemes. For this study, the two-dimensional finite element method was used. Mandibular arch models, with only canine remaining, were fabricated. In the first denture base design, a space, approximately 1mm thick, was prepared between the denture and the dome abutment. In the second denture base design, contact between the denture and the dome abutment was eliminated except the contact of the occlusal third of the abutment. In order to represent the same physiological condition as the fixed areas of the mandible under loading schemes, the eight nodes which lie at the mandibular angle region, the coronoid process and the mandibular condyle were assumed to be fixed. Each model was loaded with a magnitude of 10 kgs on the first molar region(P1) and 7 kgs on the central incisal region (P2) in a vertical direction. Then the force of 10 kgs was applied distributively from the first premolar to the second molar of each model in a vertical direction(P3). The results were as follows. : 1. When the testing vertical loads were given to the selected points of the overdenture, the overdenture showed the rotatory phenomenon, as well as sinking and the displacements of alveolar ridge, abutment and lower border of mandible under the metal base overdenture were less than those under the acrylic resin overdenture. 2. The maximum principal stresses(the maximum tensile stresses) being considered, high tensile stresses occured at the buccal shelf area, the posterior region of the ridge crest and the anterior border region of the mandibular ramus. 3. The minimum principal stresses(the maximum compressive stresses) being considered, high compressive stresses occured at the inferior and posterior border region of the mandible, the mandibular angle and the posterior border region of the mandibular ramus. 4. The vertical load on the central incisal region(P2) produced higher equivalent stress in the mandible than that on any other region(P1, P3) because of the long lever arm distance from the fixed points to the loading point. 5. Higher equivalent stresses were distributed throughout the metal base overdenture than the resin base overdenture under the same loading condition. 6. The case of occlusal third contact of the abutment to the denture produced higher equivalent stresses in the abutment, the mandibular area around the abutment and the overdenture than the case of a 1mm space between the denture and the abutment. 7. Without regard to overdenture base materials and designs, the amounts and distribution patterns of equivalent stresses under the same loading condition were similar in the mucous membrane.

  • PDF

Evaluation of occlusal strength using T-Scan Novus and Dental prescale II in dental prosthodontic treatments: A case report (보철물 수복 형태에 따른 T-Scan Novus와 Dental prescale II를 이용한 교합력 평가 활용 증례)

  • Su-Hyun Choi;Yu-Sung Choi;Jong-Hyuk Lee;Seung-Ryong Ha
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.2
    • /
    • pp.160-178
    • /
    • 2023
  • Diagnosis and analysis of occlusal relationships are important factors in prosthetic treatment. A thorough occlusion analysis and evaluation should be performed before treatment to restore a stable interocclusal relationship. Analysis and evaluation are essential during the treatment process and at regular follow-ups. Recently, with the development of dental equipment and digital processing methods, new quantitative analysis methods that can record the patient's occlusal relationship have been introduced. Among them, the T-Scan Novus (Tekscan Inc., S. Boston, MA, USA) displays the strength of the initial contact point and the occlusal contact point of the teeth using a pressure sensor. With this, occlusal contact time of the teeth, anteroposterior and left-right balance of occlusal force can be compared. The Dental prescale II (GC Co., Tokyo, Japan) scans the occlusal contact point using a pressure-sensing film and analyzes the density of the contact point. It can measure the distribution and strength of the occlusal force of the teeth in the most natural occlusion state. Based on this, appropriate prosthetic treatment (four-unit fixed partial denture, removable partial denture, complete denture, and complete oral restoration cases) was performed according to the area and extent of the patient's tooth loss. The patient's occlusion at the first visit, treatment stage, right after treatment, and regular follow-up were compared and evaluated using a quantitative method for appropriate occlusion analysis using T-Scan Novus and Dental prescale II. This report enhances the understanding of occlusion analysis during prosthetic restoration. The results satisfied both the clinician and patients in terms of function and aesthetics.

Effect of prosthetic designs and alveolar bone conditions on stress distribution in fixed partial dentures with pier abutments (중간 지대치가 존재하는 고정성 국소의치에서 보철물 설계 및 치조골 상태가 응력분포에 미치는 영향)

  • Cho, Wook;Kim, Chang-Seop;Jeon, Young-Chan;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.3
    • /
    • pp.328-334
    • /
    • 2009
  • Statement of problem: Pier abutments act as a Class I fulcrum lever system when the teeth are incorporated in a fixed partial denture with rigid connectors. Therefore non-rigid connector incorporated into the fixed partial denture might reduce the stresses created by the leverage. Purpose: The purpose of this study was to evaluate, by means of finite element method, the effects of non-rigid connectors and supporting alveolar bone level on stress distribution for fixed partial dentures with pier abutments. Material and methods: A 2-dimensional finite element model simulating a 5-unit metal ceramic fixed partial denture with a pier abutment with rigid or non-rigid designs, the connector was located at the distal region of the second premolar, was developed. In the model, the lower canine, second premolar, and second molar served as abutments. Four types of alveolar bone condition were employed. One was normal bone condition and others were supporting bone reduced 20% height at one abutment. Two different loading conditions, each 150 N on 1st premolar and 1st molar and 300N on 1st molar, were used. Results: Two types of FPD were displaced apically. The amount of displacement decreased in an almost linear slope away from the loaded point. Non-rigid design tended to cause the higher stresses in supporting bone of premolar and molar abutments and the lower stresses in that of canine than rigid design. Alveolar bone loss increased the stresses in supporting bone of corresponding abutment. Conclusion: Careful evaluation of the retentive capacity of retainers and the periodontal condition of abutments may be required for the prosthetic design of fixed partial denture with a pier abutment.

A Study on the Performance of Catalysts for the Recombination of Oxyhydrogen Gas Generated in Secondary Battery (이차전지내 발생하는 수소-산소 혼합기체 재결합용 촉매의 성능 측정 및 이론적 모델 연구)

  • Kim, Yong-Sik;Chang, Min-Hwan;Ju, Jeh-Beck
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.71-77
    • /
    • 2014
  • The performance of catalysts for the recombination of oxyhydrogen gas was measured and compared with the results obtained from theoretical model. The oxyhydrogen gas was generated by the electrolysis cell and recombined through the fixed bed catalytic reactor. The yield that is the ratio of water-amount produced to the water-amount consumed in the electrolysis cell was increased with the increase of KOH concentration in electrolysis cell and the applied current. The catalyst 1 showed the best performance and the yield was under 60 %. The faradic yield calculated by Faraday's law showed about 100% in maximum with catalyst 1. The production rate of water generated by the recombination was 5-40 g/day dependent on the flow rate of mixed gas. Considering the results calculated from the pseudo-homogeneous catalytic reactor model, the hot point inside the reactor was moved to the direction of outlet and the maximum temperatures were $440-480^{\circ}K$ when the gas flow rate increased. The production rate of water calculated from the theoretical model showed good agreement with experimental results below the flow rate of $0.5cm^3/sec$, but there were much differences above that flow rate.

Calibration Comparison of Single Camera and Stereo Camera (단일 카메라 캘리브레이션과 스테레오 카메라의 캘리브레이션의 비교)

  • Kim, Eui Myoung;Hong, Song Pyo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.295-303
    • /
    • 2018
  • The stereo camera system has a fixed baseline and therefore has a constant scale. However, it is difficult to measure the actual three-dimensional coordinate since the scale is not fixed when relative orientation parameters are determined through the key-point matching in the stereo image each time. Therefore, the purpose of this study was to perform the stereo camera calibration that simultaneously determines the internal characteristics of the left and right cameras and the camera relationship between them using the modified collinearity equation and compared it with the two independent single cameras calibration. In the experiment using the images taken at close range, the RMSE (Root Mean Square Error) of ${\pm}0.014m$ was occurred when the three dimensional distances were compared in the single calibration results. On the other hand, the accuracy of the three-dimensional distance of the stereo camera calibration was better because the stereo camera results were almost no error compared to the results from two single cameras. In the comparison of the epipolar images, the RMSE of the stereo camera was 0.3 pixel more than that of the two single cameras, but the effect was not significant.

Neurovascular Morphometric Aspect in the Region of Cranio-Cervical Junction (두개와 경추의 이행부에서 뇌신경계와 혈관계에 대한 형태학적 계측)

  • Lee, Kyu;Bae, Hack-Gun;Choi, Soon-Kwan;Yun, Seok-Mann;Doh, Jae-Won;Lee, Kyeong-Seok;Yun, Il-Gyu;Byun, Bark-Jang
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.9
    • /
    • pp.1094-1102
    • /
    • 2001
  • Objective : During the trans-condylar or trans-jugular approach for the lesion of cranio-cervical junction(CCJ), its necessary to identify the accurate locations of vertebral artery(VA), internal jugular vein(IJV) and its related lower cranial nerves. These neurovascular structures can also be damaged during the operation for vascular tumor or traumatic aneurysm around extra-jugular foramen, because of their changed locations. To reduce the neurovascular injury at the operation for CCJ, morphometric relationship of its surrounding neurovascular structures based on the tip of the transverse process of atlas(C1 TP), were studied. Materials & Methods : Using 10 adult formalin fixed cadavers, tip of mastoid process(MT) and TPs of atlas and axis were exposed bilaterally after removal of occipital and posterior neck muscles. Using standard caliper, the distances were measured from the C1 TP to the following structures : 1) exit point of VA from C1 transverse foramen, 2) branching point of muscular artery from VA, 3) entry point of VA into posterior atlanto-occipital membrane(AOM), 4) branching point of C-1 nerve. In addition, the distances were measured from the mid-portion of the posterior arch of atlas to the entry point of the VA into AOM and to the exit point of the VA from C1 transverse foramen. After removal of the ventrolateral neck muscles, neurovascular structures were exposed in the extra-jugular foraminal region. Distances were then measured from the C1 TP to the following structures : 1) just extra-jugular foraminal IJV and lower cranial nerves, 2) MT and branching point of facial nerve in parotid gland. In addition, distance between MT and branching point of facial nerve was measured. Results : The VA was located at the mean distance of 12mm(range, 10.5-14mm) from the C1 transverse foramen and entered into the AOM at the mean distance of 24mm(range, 22.8-24.4mm) from the C1 TP. The mean distance from the mid portion of the C1 posterior arch was 20.6mm(range, 19.1-22.3mm) to the entry point of the VA into AOM and 38.4mm(range, 34-42.4mm) to the exit point of the VA from C1 transverse foramen. Muscular artery branched away from the posterior aspect of the transverse portion of VA below the occipital condyle at the mean distance of 22.3mm(range, 15.3-27.5mm) from the C1 TP. The C-1 nerve was identified in all specimens and ran downward through the ventroinferior surface of the transverse segment of VA and branched at the mean distance of 20mm(range, 17.7-20.3mm) from the C1 TP. The IJV was located at the mean distance of 6.7mm(range, 1-13.4mm) ventromedially from the lateral surface of the C1 TP. The XI cranial nerve ran downward on the lateral surface of the IJV at the mean distance of 5mm(range, 3-7.5mm) from the C1 TP. Both IX and X cranial nerves were located in the soft tissue between the medial aspect of the internal carotid artery(ICA) and the medial aspect of the IJV at the mean distance of 15.3mm(range, 13-24mm) and 13.7mm(range, 11-15.4mm) from the C1 TP, respectively. The IX cranial nerve ran downward ventroinferiorly crossing the lateral aspect of the ICA. The X cranial nerve ran downward posteroinferior to the IX cranial nerve and descended posterior to the ICA. The XII cranial nerve was located between the posteroinferior aspect of the IX cranial nerve and the posterior aspect of the ICA at the mean distance of 13.3mm(range, 9-15mm) ventromedially from the C1 TP. The distance between MT and C1 TP was 17.4mm(range, 12.5-23.9mm). The VII cranial nerve branched at the mean distance of 10.2mm(range, 6.8-15.3mm) ventromedially from the MT and at the mean distance of 17.3mm(range, 13-21mm) anterosuperiorly from the C1 TP. Conclusion : This study facilitates an understanding of the microsurgical anatomy of CCJ and may help to reduce the neurovascular injury at the surgery around CCJ.

  • PDF

Stereotactic Target Point Verification in Actual Treatment Position of Radiosurgery (방사선수술시 두개내 표적의 정위적좌표의 치료위치에서의 확인)

  • Yun, Hyong-Geun;Lee, Hyun-Koo
    • Radiation Oncology Journal
    • /
    • v.13 no.4
    • /
    • pp.403-409
    • /
    • 1995
  • Purpose : Authors tried to enhance the safety and accuracy of radiosurgery by verifying stereotacitc target point in actual treatment position prior to irradiation. Materials and Methods : Before the actual treatment, several sections of anthropomorphic head phantom were used to create a condition of unknown coordinates of the target point. A film was sandwitched between the phantom sections and punctured by sharp needle tip. The tip of the needle represented the target point. The head phantom was fixed to the stereotactic ring and CT scan was done with CT localizer attached to the ring. After the CT scanning, the stereotactic coordinates of the target point were determined. The head phantom was secured to accelerator's treatment couch and the movement of laser isocenter to the stereotactic coordinates determined by CT scanning was performed using target positioner. Accelerator's anteroposterior and lateral portal films were taken using angiographic localizers. The stereotactic coordinates determined by analysis of portal films were compared with the stereotactic coordinates previously determined by CT scanning. Following the correction of discrepancy the head phantom was irradiated using a stereotactic technique of several arcs. After the irradiation, the film which was sandwitched between the phantom sections was developed and the degree of coincidence between the center of the radiation distribution with the target point represented by the hole in the film was measured. In the treatment of the actual patients, the way of determining the stereotactic coordinates with CT localizers and angiograuhic localizers was the same as the phantom study. After the correction of the discrepancy between two sets of coordinates, we proceeded to the irradiation of the actual patient. Results : In the phantom study, the agreement between the center of the radiation distribution and the localized target point was very good. By measuring optical density profiles of the sandwitched film along axes that intersected the target point, authors could confirm the discrepancy was 0.3 mm. In the treatment of an actual patient, the discrepancy between the stereotactic coordinates with CT localizers and angiographic localizers was 0.6 mm. Conclusion : By verifying stereotactic target point in actual treatment position prior to irradiation, the accuracy and safety of streotactic radiosurgery procedure were established.

  • PDF