DOI QR코드

DOI QR Code

APPROXIMATION OF SOLUTIONS THROUGH THE FIBONACCI WAVELETS AND MEASURE OF NONCOMPACTNESS TO NONLINEAR VOLTERRA-FREDHOLM FRACTIONAL INTEGRAL EQUATIONS

  • Supriya Kumar Paul (Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology) ;
  • Lakshmi Narayan Mishra (Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology)
  • 투고 : 2023.11.12
  • 심사 : 2024.01.18
  • 발행 : 2024.03.30

초록

This paper consists of two significant aims. The first aim of this paper is to establish the criteria for the existence of solutions to nonlinear Volterra-Fredholm (V-F) fractional integral equations on [0, L], where 0 < L < ∞. The fractional integral is described here in the sense of the Katugampola fractional integral of order λ > 0 and with the parameter β > 0. The concepts of the fixed point theorem and the measure of noncompactness are used as the main tools to prove the existence of solutions. The second aim of this paper is to introduce a computational method to obtain approximate numerical solutions to the considered problem. This method is based on the Fibonacci wavelets with collocation technique. Besides, the results of the error analysis and discussions of the accuracy of the solutions are also presented. To the best knowledge of the authors, this is the first computational method for this generalized problem to obtain approximate solutions. Finally, two examples are discussed with the computational tables and convergence graphs to interpret the efficiency and applicability of the presented method.

키워드

참고문헌

  1. M. A. Abdou, On a symptotic Methods for Fredholm-Volterra Integral Equation of the Second Kind in Contact Problems, J. Comput. Appl. Math. 154 (2) (2003), 431-446. https://doi.org/10.1016/S0377-0427(02)00862-2
  2. M. A. Abdou, F. A. Salama, Volterra-Fredholm integral equation of the first kind and spectral relationships, Appl. Math. Comput. 153 (1) (2004), 141-153. https://doi.org/10.1016/S0096-3003(03)00619-2
  3. R. Amin, H. Alrabaiah, I. Mahariq, A. Zeb, Theoretical and computational results for mixed type Volterra-Fredholm fractional integral equations, Fractals 30 (1) (2022), 2240035. https://doi.org/10.1142/S0218348X22400357
  4. R. Amin, N. Senu, M. B. Hafeez, N. I. Arshad, A. Ahmadian, S. Salahshour, W. Sumelka, A computational algorithm for the numerical solution of nonlinear fractional integral equations, Fractals 30 (1) (2022), 2240030. https://doi.org/10.1142/S0218348X22400308
  5. J. Banas, K. Goebel, Measures of noncompactness in Banach spaces, Lecture Notes in Pure and Applied Mathematics, 60, Marcel Dekker, New York, 1980.
  6. I. A. Bhat, L. N. Mishra, Numerical solutions of Volterra integral equations of third kind and its convergence analysis, Symmetry, 14 (2022), 2600. https://doi.org/10.3390/sym14122600
  7. I. A. Bhat, L. N. Mishra, V. N. Mishra, C. Tun,c, O. Tun,c, Precision and efficiency of an interpolation approach to weakly singular integral equations, Int. J. Numer. Method H. (2024). https://doi.org/10.1108/hff-09-2023-0553
  8. A. Chandola, R. M. Pandey, R. Agarwal, L. Rathour, V. N. Mishra, On some properties and applications of the generalized m-parameter Mittag-Leffler function, Adv. Math. Models Appl. 7 (2) (2022), 130-145.
  9. C. Constanda, Integral equations of the first kind in plane elasticity, Quart. Appl. Math. 53 (1995), 783-793. https://api.semanticscholar.org/CorpusID:124591747 https://doi.org/10.1090/qam/1359511
  10. G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Semin. Mat. Univ. Padova 24 (1955), 84-92. http://www.numdam.org/article/RSMUP_1955__24__84_0.pdf
  11. M. A. Darwish, K. Sadarangani, On Erdelyi-Kober type quadratic integral equation with linear modification of the argument, Appl. Math. Comput. 238 (2014), 30-42. https://doi.org/10.1016/j.amc.2014.04.002
  12. D. Dhiman, L. N. Mishra, V. N. Mishra, Solvability of some non-linear functional integral equations via measure of noncompactness, Adv. Stud. Contemp. Math. 32 (2) (2022), 157-171.
  13. M. Didgar, A. R. Vahidi, Approximate solution of linear Volterra-Fredholm Integral equations and systems of Volterra-Fredholm integral equations using Taylor expansion method, Iran. J. Math. Sci. Inform. 15 (2) (2020), 31-50. http://ijmsi.ir/article-1-1131-en.html
  14. M. Z. Ge,cmen, E. C, elik, Numerical solution of Volterra-Fredholm integral equations with Hosoya polynomials, Math. Methods Appl. Sci. 44 (14) (2021), 11166-11173. https://doi.org/10.1002/mma.7479
  15. U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput. 218 (2011), 860-865. https://doi.org/10.1016/j.amc.2011.03.062
  16. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, North-Holland, 2006.
  17. K. Kumar, L. Rathour, M. K. Sharma, V.N. Mishra, Fixed point approximation for suzuki generalized nonexpansive mapping using B(δ,µ) condition, Appl. Math. 13 (2) (2022), 215-227. https://doi.org/10.4236/am.2022.132017
  18. K. Maleknejad, S. Sohrabi, Legendre polynomial solution of nonlinear Volterra-Fredholm integral equations, IUST Int. J. Eng. Sci. 19 (2008), 49-52. https://www.sid.ir/FileServer/JE/807200805-209
  19. K. Maleknejad, M. R. F. Yami, A computational method for system of Volterra-Fredholm integral equations, Appl. Math. Comput. 183 (2006), 589-595. https://doi.org/10.1016/j.amc.2006.05.105
  20. M. M. A. Metwali, V. N. Mishra, On the measure of noncompactness in Lp(ℝ+) and applications to a product of n-integral equations, Turk. J. of Math. 47 (1) (2023), 372-386. https://doi.org/10.55730/1300-0098.3365
  21. S. Micula, An iterative numerical method for Fredholm-Volterra integral equations of the second kind, Appl. Math. Comput. 270 (2015), 935-942. https://doi.org/10.1016/j.amc.2015.08.110
  22. K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, 1993.
  23. F. Mirzaee, E. Hadadiyan, Numerical solution of Volterra-Fredholm integral equations via modification of hat functions, Appl. Math. Comput. 280 (2016), 110-123. https://doi.org/10.1016/j.amc.2016.01.038
  24. L. N. Mishra, V. K. Pathak, D. Baleanu, Approximation of solutions for nonlinear functional integral equations, AIMS Math. 7 (9) (2022) 17486-17506. https://doi.org/10.3934/math.2022964
  25. V. N. Mishra, M. Raiz, N. Rao, Dunkl analouge of Szasz Schurer Beta bivariate operators, Math. Found. Comput. 6 (4) (2023), 651-669. https://doi.org/10.3934/mfc.2022037
  26. N. I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity, P. Noordhoff, Groningen, Holland, 1953.
  27. V. K. Pathak, L. N. Mishra, On solvability and approximating the solutions for nonlinear infinite system of fractional functional integral equations in the sequence space ℓp, p > 1, J. Integral Equ. Appl. 35 (4) (2023), 443-458. https://doi.org/10.1216/jie.2023.35.443
  28. V. K. Pathak, L. N. Mishra, Existence of solution of Erdelyi-Kober fractional integral equations using measure of non-compactness, Discontinuity Nonlinearity Complex. 12 (3) (2023), 701-714. https://doi.org/10.5890/dnc.2023.09.015
  29. V. K. Pathak, L. N. Mishra, V. N. Mishra, On the solvability of a class of nonlinear functional integral equations involving Erdelyi-Kober fractional operator, Math. Methods Appl. Sci. 46 (2023), 14340-14352. https://doi.org/10.1002/mma.9322
  30. V. K. Pathak, L. N. Mishra, V. N. Mishra, D. Baleanu, On the Solvability of Mixed-Type Fractional-Order Non-Linear Functional Integral Equations in the Banach Space C(I), Fractal Fract. 6 (12) (2022), 744. https://doi.org/10.3390/fractalfract6120744
  31. S. K. Paul, L. N. Mishra, V. N. Mishra, D. Baleanu, An effective method for solving nonlinear integral equations involving the Riemann-Liouville fractional operator, AIMS Math. 8 (8) (2023), 17448-17469. https://doi.org/10.3934/math.2023891
  32. S. K. Paul, L. N. Mishra, V. N. Mishra, Approximate numerical solutions of fractional integral equations using Laguerre and Touchard polynomials, Palestine J. Math. 12 (3) (2023), 416-431. https://tinyurl.com/5cp3x9ra
  33. S. K. Paul, L. N. Mishra, V. N. Mishra, D. Baleanu, Analysis of mixed type nonlinear VolterraFredholm integral equations involving the Erdelyi-Kober fractional operator, J. King Saud Univ. - Sci. 35 (10) (2023), 102949. https://doi.org/10.1016/j.jksus.2023.102949
  34. M. Raiz, A. Kumar, V. N. Mishra, N. Rao, Dunkl analogue of Szasz-Schurer-Beta operators and their approximation behaviour, Math. Found. Comput. 5 (4) (2022), 315-330. https://doi.org/10.3934/mfc.2022007
  35. M. Raiz, R. S. Rajawat, V. N. Mishra, α-Schurer Durrmeyer operators and their approximation properties, Ann. Univ. Craiova Math. Comput. Sci. Ser. 50 (1) (2023), 189-204. https://doi.org/10.52846/ami.v50i1.1663 
  36. S. Sabermahani, Y. Ordokhani, S. A. Yousefi, Fibonacci wavelets and their applications for solving two classes of time-varying delay problems, Optim. Control Appl. Methods 41 (2) (2019), 395-416. https://doi.org/10.1002/oca.2549
  37. S. Sabermahani, Y. Ordokhani, Fibonacci wavelets and Galerkin method to investigate fractional optimal control problems with bibliometric analysis, J. Vib. Control 27 (15-16) (2021), 1778-1792. https://doi.org/10.1177/1077546320948346
  38. A. G. Sanatee, L. Rathour, V. N. Mishra, V. Dewangan, Some fixed point theorems in regular modular metric spaces and application to Caratheodorys type anti-periodic boundary value problem, J. Anal. 31 (2023), 619-632. https://doi.org/10.1007/s41478-022-00469-z
  39. P. Shahi, L. Rathour, V. N. Mishra, Expansive fixed point theorems for tri-simulation functions, J. Eng. Exact Sci. 8 (3) (2022), 14303-01e. https://doi.org/10.18540/jcecvl8iss3pp14303-01e
  40. H. M. Srivastava, F. A. Shah, N. A. Nayied, Fibonacci wavelet method for the solution of the non-linear Hunter-Saxton equation, Appl. Sci. 12 (15) (2022), 7738. https://doi.org/10.3390/app12157738
  41. S. Verma, P. Viswanathan, Katugampola fractional integral and fractal dimension of bivariate functions, Results Math. 76 (2021), 165. https://doi.org/10.1007/s00025-021-01475-6
  42. E. Yusufoglu, B. Erba,s, Numerical expansion methods for solving Fredholm-Volterra type linear integral equations by interpolation and quadrature rules, Kybernetes 37 (6) (2008) 768-785. https://doi.org/10.1108/03684920810876972