• Title/Summary/Keyword: fixed plate

Search Result 492, Processing Time 0.024 seconds

Delayed Foreign Body Reaction Caused by Bioabsorbable Plates Used for Maxillofacial Fractures

  • Jeon, Hong Bae;Kang, Dong Hee;Gu, Ja Hea;Oh, Sang Ah
    • Archives of Plastic Surgery
    • /
    • v.43 no.1
    • /
    • pp.40-45
    • /
    • 2016
  • Background Bioabsorbable plates and screws are commonly used to reduce maxillofacial bones, particularly in pediatric patients because they degrade completely without complications after bone healing. In this study, we encountered eight cases of a delayed foreign body reaction after surgical fixation with bioabsorbable plates and screws. Methods A total of 234 patients with a maxillofacial fracture underwent surgical treatment from March 2006 to October 2013, in which rigid fixation was achieved with the Inion CPS (Inion, Tampere, Finland) plating system in 173 patients and Rapidsorb (Synthes, West Chester, PA, USA) in 61 patients. Their mean age was 35.2 years (range, 15-84 years). Most patients were stabilized with two- or three-point fixation at the frontozygomatic suture, infraorbital rim, and anterior wall of the maxilla. Results Complications occurred in eight (3.4%) of 234 patients, including palpable, fixed masses in six patients and focal swelling in two patients. The period from surgical fixation to the onset of symptoms was 9-23 months. Six patients with a mass underwent secondary surgery for mass removal. The masses contained fibrous tissue with a yellow, grainy, cloudy fluid and remnants of an incompletely degraded bioabsorbable plate and screws. Their histological findings demonstrated a foreign body reaction. Conclusions Inadequate degradation of bioabsorbable plates caused a delayed inflammatory foreign body reaction requiring secondary surgery. Therefore, it is prudent to consider the possibility of delayed complications when using bioabsorbable plates and surgeons must conduct longer and closer follow-up observations.

EXPRESSION OF OSTEONECTIN ON DISTRACTION OSTEOGENESIS IN THE RABBIT MANDIBLE (가토 하악골에서 신연 골형성술시 Osteonectin의 발현)

  • Kim, Dong-Joon;Jee, Yu-Jin;Song, Hyun-Chul
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.5
    • /
    • pp.391-399
    • /
    • 2004
  • Distraction osteogenesis has been thought to be promising technique for replacing bone graft in maxilla and mandible. The purpose of this study was to investigate the expression of osteonectin on distraction osteogenesis. Sixteen rabbits were used for this experiment. Osteotomy was performed between premolar and mental foramen. On the experimental group, distraction device was connected to the respective bone segments. On the control group, bone segments were fixed using plate and screws after osteotomy. Distraction was carried out at the rate of 0.7mm per day to obtain a 4.9mm elongation on the experimental group. After 3 days, 7 days, 14 days, and 28 days two rabbits of each group were sacrificed. The results obtained from this study were as follow : Experimental group was observed that the gaps between the distracted bone edges were occupied by new bone. Expression of Osteonectin were detected throughout the experiment in both groups and Expression of Osteonectin were markedly increased during distraction and consolidation period in experimental group than control group. From these results, it could be stated that distraction was shown to improve and accelerate bone formation and mechanical stress like distraction has considerable effects on osteonectin.

ENDOSCOPIC-ASSISTED OPEN REDUCTION AND INTERNAL FIXATION (EAORIF) FOR CONDYLAR FRACTURE (내시경을 이용한 하악골 과두경부 골절의 정복 및 견고 고정술)

  • Paeng, Jun-Young;Ok, Yong-Ju;Myoung, Hoon;Hwang, Soon-Jung;Seo, Byoung-Moo;Choi, Jin-Young;Lee, Jong-Ho;Choung, Pill-Hoon;Kim, Myung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.5
    • /
    • pp.474-481
    • /
    • 2006
  • The endoscopic assisted approach for the treatment of condylar fracture is a less invasive alternative treatment modality and is considered to be able to overcome the limited access to the operation field to obtain an accurate reduction and fixation. Six patients with condylar neck and subcondylar fracture underwent the endoscopic assisted open reduction and internal fixation through the transoral approach at the Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital. The endoscope was inserted through an intraoral incision and the reduction of fracture fragment was performed via a transbuccal approach with two transcutaneous stab incisions. Five patients showed anatomic reduction without any complications. One patient, whose fracture site was fixed with a single plate, showed displacement of fractured condylar segment during the follow up period. No patient had any facial nerve damage.

Probability Based Determination of Slab Thickness Satisfying Floor Vibration Criteria (수직진동 사용성 기준을 고려한 바닥판 두께 제안)

  • Lee Min-Jung;Nam Sang-Wook;Han Sang-Whan
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.687-694
    • /
    • 2005
  • In current design practice, the thickness of the floor slab has been determined to satisfy requirement for deflection control. However, previous study shows that the floor thicknesses in residential buildings may not satisfy the floor vibration criteria, even though the thickness is determined by the serviceability requirements in current design provisons. Thus it is necessary to develop the procedure to determine slab thickness that satisfies the floor vibration criteria. This study attempts to propose slab thickness for flat plate slab systems that satisfies floor vibration criteria against occupant induced floor vibration(heel drop load). Two boundary conditions(simple and fixed support), three square flat plates(4, 6, 8m), and five concrete strength($18\~30$ MPa) are considered. Since there are large uncertainties in loading and material properties, probabilistic approach is adopted using Monte-Carlo simulation procedures.

Effect of Unstable Surface Exercise on Trunk Posture and Balance Ability in Patients With Scoliosis: After six months follow-up (불안정한 표면 운동이 척추측만증 환자의 체간자세와 균형에 미치는 영향)

  • Lee, Woo Jin;Kong, Young Soo;Ko, Yu Min;Park, Ji Won
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.5
    • /
    • pp.232-238
    • /
    • 2013
  • Purpose: The aim of this study was to evaluate the effect of lumbar stabilization exercise on an unstable surface on trunk posture and static standing balance ability in patients with scoliosis. Methods: Subjects included 18 patients who showed symptom of scoliosis. Patients were divided into two experimental groups, one using an unstable surface and one using a fixed surface, and the patients were required to perform a lumbar stabilization exercise a total of 12 times for 60 minutes per session, three times per week for a period of four weeks, with a six-months follow-up period. Results: A significant reduction was observed in the group that performed the lumbar stabilization exercise on an unstable surface (p<0.05). A significant decrease in both the condition of closed eyes or open eyes in the left and right directions was observed in the group that performed the lumbar stabilization exercise on an unstable surface (p<0.05). After six months, results of comparison of the length of both sides of the trunk showed a significantl decrease in the group performing lumbar stabilization exercises on an unstable surface. Conclusion: Lumbar stabilization exercise on an unstable surface improved the trunk posture of patients with scoliosis symmetrically, and static balance ability in a standing posture showed improvement. In the future, lumbar stabilization exercise on an unstable surface may be used as an exercise for posture correction and balance increase for patients with scoliosis.

Study on the Burr Formation in Drilling a Thick Plate (후판의 Drill가공에 있어서 Burr의 생성에 관한 연구)

  • Choe, Seong-Kyu;Yang, Gyun-Eui;Kim, Tae-Yeong;Seo, Nam-Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.3
    • /
    • pp.30-39
    • /
    • 1986
  • The burr worsens the accuracy of a workpiece and decreases a lot of pro- ductivity because it takes so much time and efforts to remove it. In this paper, the height, thickness and size of a drilling burr were derived from the drilling variables of drill diameter, chisel edge angle, web rate =($\Frac{2{\times}\;web\;thickness}{drill\;dia}$) and yielding stress of the workpiece as wel as feed, point angle and helix angle. The theoretical and experimental values of drilling thrust, torque and burr size of the testpiece were analyzed with the method of numerical analysis in a standard drilling condition. The order of choosing the drilling variables for the purpose of controlling the burr size was dealt in this paper with burr forming ratio. The results are as follows: (1) The drill diameter forms 42 percents feed 25 percents point angle 23 percents and web rate, chisel edge angle and gelix angle 5 percents of the partial differential slope of drilling thrust within the usual available ranges of drilling variables. (2) The drill diameter forms 55 percents feed 26 percents web rate 9 percents and chisel edge angle, point angle and helix angle 10 percents of the par- tial differential slope of drilling torque in the usual available ranges of drilling variables. (3) About 70 percents of the burr size can be controlled by feed, 29 percents by web rate in the case of a fixed diameter. It is recommended drilling10 variables to be chosen in the order of feed, web rate, drill diameter, point angle, chisel edge angle and helix angle so as to control the burr size effectively.

  • PDF

Effect of Unstale Surface Lumbar Stabilization Exercise on Trunk Posture and Balance Ability in Patients With Scoliosis (불안정한 지지면의 척추안정화 운동이 척추측만증 환자의 체간 자세와 균형에 미치는 영향)

  • Lee, Woo-Jin;Lim, Chang-Hun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.1
    • /
    • pp.59-67
    • /
    • 2012
  • Purpose : This study was somatosensory less in patients with idiopathic scoliosis somatosensory input to the lumbar stabilization exercises carried out to determine the most effective treatment method to be stable and unstable in terms of supporting the lumbar stabilization exercises the patient's torso length and postural sway by comparing the distance from a standing position and looked for differences in effect on the balance. Methods : The subjects of the study were 18 patients who showed the symptom of scoliosis. The study classified the patients into two experimental groups, one using an unstable surface and one a fixed surface, and the patients were required to do a lumbar stabilization exercise a total of 12 times for 60 minutes per session, three times a week for four weeks. The study carried out a paired comparison t-test so as to compare differences between measurement values in each experimental group before and after the exercise. Results : Superior iliac spine on the left, there was a significant reduction in the group doing the lumbar stabilization exercise on an unstable surface (p<0.05). Regarding change in sway distance to the left and right directions in the group doing the lumbar stabilization exercise on the unstable surface, there was a significant decrease in both the condition of closed eyes or open eyes (p<0.05). As for change in sway distance in forward-and-backward direction, there was a significant reduction in the condition of either closed eyes or open eyes (p<0.05). Conclusion : The lumbar stabilization exercise on an unstable surface improved the trunk posture of patients with scoliosis symmetrically, and the static balance ability in a standing posture was discovered to be improved. In the future, the lumbar stabilization exercise on an unstable surface may be used as a posture correction and balance increase exercise for patients with scoliosis.

Comparative Study to the Tribological Characteristics of Graphite Nano Lubricants after Thermal Degradation (그라파이트 나노윤활유의 열화 후 윤활 특성 비교 연구)

  • Lee, Jae-Keun;Lee, Chang-Gun;Hwang, Yu-Jin;Choi, Young-Min;Park, Min-Chan;Choi, Cheol;Oh, Je-Myung
    • Tribology and Lubricants
    • /
    • v.24 no.4
    • /
    • pp.190-195
    • /
    • 2008
  • Many researchers have tried to improve the tribological characteristics of lubricant by adding various nano particles in the base lubricant. But the reliability evaluation of the lubricants are rarely performed in its real operation condition. In this study, the physical property and the tribological characteristics of the graphite nano lubricant were evaluated and compared with raw lubricant after thermal degrading. In order to evaluate the tirbological characteristics, the disk-on-disk tribotester was adopted to measure the friction coefficient of the graphite nano lubricants. Also the temperature variations of friction surfaces were measured by the thermocouple installed on the fixed plate in the test chamber of the tribotester. The kinematic viscosity was measured using a capillary viscometer on the temperatures of 40, 60 and $80^{\circ}C$. The results showed that the graphite nano lubricant had lower friction coefficient and less wear on the friction surfaces than raw lubricant. After thermally degrading, the friction coefficients of graphite nano lubricant increased, but the friction coefficients after thermal degradation were still maintained lower than those of raw lubricant.

Finite Difference Numerical Solutions for Isotropic Rectangular Thin Elastic Plates with Three Edges Clamped and the Other Free (등방성 직사각형의 3변 고정 1변 자유 얇은 탄성판에 대한 유한차분법의 수치해)

  • Seo Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.3
    • /
    • pp.225-240
    • /
    • 2006
  • In order to calculate bending moments of rectangular plates with three edges clamped the other free subjected to both a uniform load and a triangular load, a finite difference equation for the non-dimensional governing equation are presented and numerical solutions with different aspect ratios and/or number of grid points are analyzed. The finite difference solutions are obtained by use of grid points up to 11,520 and the optimum grid points according to aspect ratios of the plate are presented as well. The obtained numerical solutions are shown to satisfy the given x moment boundary condition at the free edge, which can not be satisfied in Levy's analytical solutions and peculiar behaviour of the calculated moments is observed around the corners between the free edge and fixed ones. The numerical solutions of bending moments subjected to both a uniform load and a triangular load are compared with the corresponding analytical solutions which are shown in very good agreement on the solution domain except the neighborhood of the free edge.

Non linear soil structure interaction of space frame-pile foundation-soil system

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.95-110
    • /
    • 2014
  • The study deals with physical modeling of space frame-pile foundation and soil system using finite element models. The superstructure frame is analyzed using complete three-dimensional finite element method where the component of the frame such as slab, beam and columns are descretized using 20 node isoparametric continuum elements. Initially, the frame is analyzed assuming the fixed column bases. Later the pile foundation is worked out separately wherein the simplified models of finite elements such as beam and plate element are used for pile and pile cap, respectively. The non-linear behaviour of soil mass is incorporated by idealizing the soil as non-linear springs using p-y curve along the lines similar to that by Georgiadis et al. (1992). For analysis of pile foundation, the non-linearity of soil via p-y curve approach is incorporated using the incremental approach. The interaction analysis is conducted for the parametric study. The non-linearity of soil is further incorporated using iterative approach, i.e., secant modulus approach, in the interaction analysis. The effect the various parameters of the pile foundation such as spacing in a group and configuration of the pile group is evaluated on the response of superstructure owing to non-linearity of the soil. The response included the displacement at the top of the frame and bending moment in columns. The non-linearity of soil increases the top displacement in the range of 7.8%-16.7%. However, its effect is found very marginal on the absolute maximum moment in columns. The hogging moment decreases by 0.005% while sagging moment increases by 0.02%.