• Title/Summary/Keyword: fixed ground

Search Result 419, Processing Time 0.07 seconds

Turbulent Flow Simulations on 2-Dimensional Ground Effect Part II. Study on the Effects of Ground Boundary Conditions (2차원 지면효과에 대한 난류 유동장 해석 Part II. 지면경계 조건의 영향에 대한 연구)

  • Kim, Yoon-Sik;Lee, Jae-Eun;Kim, Eu-Gene;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.670-676
    • /
    • 2007
  • A comparative study on ground boundary conditions for the airfoil in ground effect has been carried out. The objective of the present study is to clarify effects of the ground boundary conditions so that it will be helpful to analyse results of wind tunnel tests using the fixed ground board or the image method. A low Mach number preconditioned Navier-Stokes solver using the overlap grid method has been applied. It has been turned out that results with the symmetric boundary condition are almost the same to those with the moving boundary condition. Results with the fixed ground boundary show discrepancy to those with the moving boundary condition when flow separation on the ground board takes place.

Numerical Analysis of Moving Type and Static Type Electrodynamic Suspension Simulator with Superconducting Levitation Magnet (초전도 부상자석을 이용한 동적 및 정지형 반발식 자기부상 시험기의 수치해석)

  • Lee, E.R.;Bae, D.K.;Chung, Y.D.;Yoon, Y.S.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.49-54
    • /
    • 2009
  • This paper presents the numerical simulation results on the moving type electrodynamic suspension (EDS) simulator and static type EDS simulator using high-Tc superconducting (HTS) levitation magnet. The levitation force of the EDS system is formed by the reaction between the moving magnet and the fixed ground conductor. The possible two ways to simulate the EDS system were simulated in this paper by using finite element method (FEM). The first way was the moving type simulator which consists of the fixed HTS magnet and the moving ground conductor. The second way was the static type simulator which consists of the fixed magnet, the fixed ground conductor and the ac current supply system. To verify the characteristics of high speed EDS system with the moving type simulator heavy, large and fast moving ground conductor is needed. The static type simulator can get the characteristics of the high speed EDS system by applying equivalent ac current to velocity, therefore it does not need large moving part. The static type EDS simulator, which can consist of an HTS magnet, the fixed ground conductor(s), an AC power supply and the measuring devices, also test the effect of the shape of the ground conductor easily. The plate type ground conductor made stronger levitation force than ring type ground conductor. Although the outer diameter 335 mm ring type ground conductor (Ring3) was larger than the outer diameter 235 mm ground conductor (Ring2), the levitation force by Ring2 was stronger than that by Ring3. From the calculation results on this paper, the consideration of the magnetic flux distribution according to the levitation height should be included in the process of the ground conductor design.

Experimental Study on the Ground Support Conditions of Pipe Ends in Single Span Pipe Greenhouse (단동파이프하우스의 지점조건 분석을 위한 실험 연구)

  • Lee, Suk-Gun;Lee, Jong-Won;Kwak, Cheul-Soon;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.17 no.3
    • /
    • pp.188-196
    • /
    • 2008
  • Single span pipe greenhouses (pipe houses) are widely used in Korea because these simple structures are suitable for construction by farmers thus reducing labor cost. However, these pipe houses are very weak and frequently damaged by heavy snow and strong wind. Pipe house is constructed by pipe fabricator, which is anchored to the ground by inserting each pipe end into ground to $30\sim40cm$, so the ground support condition of pipe end is not clear for theoretical analysis on greenhouse structure. This study was carried out to find out the suitable ground support condition needed f3r structural analysis when pipe house was designed. The snow and wind loading tests on the actual size pipe house were conducted to measure the collapsing shape, displacement and strain. The experimental results were compared with the structural analysis results for 4 different ground support conditions of pipe ends(fixed at ground surface, hinged at ground surface, fixed under ground and hinged under ground). The pipe house under snow load was collapsed at the eaves as predicted, and the actual strain at the windward eave and ground support under wind load was larger than that under snow load. The displacement was the largest at the hinged support under ground, followed by the hinged at ground surface, the fixed under ground and then the fixed at ground surface independent of displacement direction and experimental loading condition. The experimental results agreed most closely with the results of theoretical analysis at the fixed condition under ground among 4 different ground support conditions. As the results, it was recommended that the pipe end support condition of single span pipe greenhouse was the fixed under ground for structural analysis.

Analysis on the Characteristics of the Superconducting Electrodynamic Suspension According to the Variation of the Ground Conductor (지상도체 변화에 따른 초전도 반발식 자기부상 특성 해석)

  • Bae, Duck-Kweon;Cho, Han-Wook;Lee, Jong-Min;Han, Hyung-Suk;Lee, Chang-Young;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1159_1160
    • /
    • 2009
  • This paper presents the numerical simulation results on the supercodnucting electrodynamic suspension (EDS) simulator according to the variation of the ground conductor. The levitation force of the EDS system is formed by the reaction between the moving magnet and the fixed ground conductor. The possible way to simulate the EDS system were simulated in this paper by using finite element method (FEM). The static type simulator which consists of the fixed magnet, the fixed ground conductor and the ac current supply system. To verify the characteristics of high speed EDS system with the moving type simulator heavy, large and fast moving ground conductor is needed. The static type simulator can get the characteristics of the high speed EDS system by applying equivalent ac current to velocity, therefore it does not need large moving part. The static type EDS simulator, which can consist of an HTS magnet, the fixed ground conductor(s), an AC power supply and the measuring devices, also test the effect of the shape of the ground conductor easily. The plate type ground conductor made stronger levitation force than ring type ground conductor. Although the outer diameter 335 mm ring type ground conductor (Ring3) was larger than the outer diameter 235 mm ground conductor (Ring2), the levitation force by Ring2 was stronger than that by Ring3. From the calculation results on this paper, the consideration of the magnetic flux distribution according to the levitation height should be included in the process of the ground conductor design.

  • PDF

Failure Rate Characteristics Analysis under Ground Mobile and Ground Fixed Environments (지상 기동 및 고정 환경하 고장률 특성 분석)

  • Yun, Hui-Sung;Jeong, Da-Un;Yoon, Jong-Sung;Lee, Seung-Hun
    • Journal of Applied Reliability
    • /
    • v.11 no.3
    • /
    • pp.293-303
    • /
    • 2011
  • Reliability Prediction using MIL-HDBK-217F has some restrictions due to its one modeling basis. One of the restrictions is caused by selecting one operating environment of a system, which is chosen regardless of its detailed conditions, e.g., external impact and vibration. Especially, an equipment, which is installed on a mobile vehicle though its movement is quasi-static, is controversial to designate its environment as ground mobile($G_M$), rather than ground fixed($G_F$). In this paper, failure rates were compared, which are computed using several moving time rates to total operating time. RiAC-HDBK-217Plus was used as the basic calculation model. In addition, $G_F$ conditioned failure rate was evaluated by comparing with that under $G_M$ environment but fixed state.

Evaluation of Pile-Ground Interaction Models of Wind Turbine with Twisted Tripod Support Structure for Seismic Safety Analysis (지진 안전도 해석을 위한 Twisted Tripod 지지 구조를 갖는 풍력발전기의 말뚝-지반 상호작용 모델 평가)

  • Park, Kwang-yeun;Park, Wonsuk
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.81-87
    • /
    • 2018
  • The seismic response, the natural frequencies and the mode shapes of an offshore wind turbine with twisted tripod substructure subject to various pile-ground interactions are discussed in this paper. The acceleration responses of the tower head by four historical earthquakes are presented as the seismic response, while the other loads are assumed as ambient loads. For the pile-ground interactions, the fixed, linear and nonlinear models are employed to simulate the interactions and the p-y, t-z and Q-z curves are utilized for the linear and nonlinear models. The curves are designed for stiff, medium and soft clays, and thus, the seven types of the pile-ground interactions are used to compare the seismic response, the acceleration of the tower head. The mode shapes are similar to each other for all types of pile-ground interactions. The natural frequencies, however, are almost same for the three clay types of the linear model, while the natural frequency of the fixed support model is quite different from that of the linear interaction model. The wind turbine with the fixed support model has the biggest magnitude of acceleration. In addition, the nonlinear model is more sensitive to the stiffness of clay than the linear pile-ground interaction model.

Numerical Simulation of Turbulent Flow around 2-D Airfoils in Ground Effect (CFD에 의한 2차원 지면 효과익 주위의 난류유동계산)

  • H.H. Chun;R.H. Chang;M.S. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.28-40
    • /
    • 2002
  • Turbulent flows around two-dimensional wing sections in ground effect are analysed by incompressible RANS equations and a finite difference method. The Baldwin-Lomax algebraic turbulence model is used to simulate high Reynolds number flows. The main purpose of this study is to clarify the two-dimensional ground effect and its flow characteristics due to different ground boundary conditions, i.e., moving and fixed bottom boundary. As a first step, to validate the present numerical code, the computational result of Clark-Y(t/C 11.7%) is compared with published numerical results and experimental data. Then, NACA4412 section in ground effect is calculated for various ground clearances with two bottom boundary conditions. According to the computational results, the difference in the lift and moment simulated with the two bottom boundary conditions is negligible, but the drag force simulated by the fixed bottom is to some extent smaller than that by the moving bottom. Therefore, it can be concluded that the drag force measured in a wind tunnel with the fixed bottom could be smaller than that with the moving bottom.

ROLL CENTER ANALYSIS OF A HALF-CAR MODEL USING POLE FOR SMALL DISPLACEMENT

  • Lee, J.K.;Shim, J.K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.833-839
    • /
    • 2006
  • In this paper, roll behavior of three planar half car models are compared. The first model is a simple model whose contact point between a wheel and the ground is assumed to be fixed with a revolute joint. The second model is a modified model of the fIrst model, whose wheel tread width can vary. In this model, the instant center of a wheel with respect to the ground, which is crucial to find the roll center, is assumed to be at the contact point of a wheel and the ground. The last model uses the pole of a wheel with respect to the ground for small displacement as the instant center of a wheel with respect to the ground. Loci of the center of gravity point, the fixed and the moving centrodes which are traces of roll center position in the ground and the body frame respectively, wheel contact points, and instant centers of a wheel with respect to the ground are calculated.

Suggestion of Analytical Technique Applying Multi-Linear Models for Analysis of Skin Shear Behavior of Tension-Type Ground Anchors in Weathered Soil (풍화토 정착 인장형 앵커에서 주면전단거동분석을 위한 다중선형모델 적용 해석기법의 제안)

  • Jeong, Hyeon-Sik;Lee, Yeong-Saeng
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.5-19
    • /
    • 2018
  • The characteristics of the skin shear stress distribution for the fixed length of the ground anchor are extremely nonlinear and the engineering mechanisms are complex relatively. So it is difficult to design the anchors simulating the actual behavior by considering various soil conditions and nonlinear behavior. Due to these limits, constant skin shear stress distributions for the whole fixed length of the ground anchor are usually assumed in the design for the sake of convenience. In this study, to assess the pull-out behavior of the tension-type ground anchors, the in-situ pull-out tests in weathered-soil conditions were carried out. Based on the test results, the skin shear behaviors for the fixed length of tension-type ground anchors were established and the multi-linear slip shear model predicting this behavior and an analytical technique applying this model were proposed. From the similarity between the results of the in-situ pull-out tests and those of the analytical technique, the applicability and availability of the multi-linear slip shear model and the proposed analytical technique were verified. The maximum shear stress was developed at the start point of the fixed length acting with the smaller load than the maximum pull-out load but the minimum shear stress was developed at the start point of the fixed length and the maximum shear stress was developed at the point apart from the start point of the fixed length after the maximum pull-out load.