• 제목/요약/키워드: five axis machine

검색결과 61건 처리시간 0.023초

오차행렬을 이용한 5축 공작기계의 오차보정모델 생성 및 실험적 검증 (Development and Experimental Verification of an Error Compensation Model for a Five-axis Machine Tool using an Error Matrix)

  • 권성환;이동목;양승한
    • 한국정밀공학회지
    • /
    • 제30권5호
    • /
    • pp.507-512
    • /
    • 2013
  • This paper proposes a new model to compensate for errors of a five-axis machine tool. A matrix with error components, that is, an error matrix, is separated from the error synthesis model of a five-axis machine tool. Based on the kinematics and inversion of the error matrix which can be obtained not by using a numerical method, an error compensation model is established and used to calculate compensation values of joint variables. The proposed compensation model does not need numerical methods to find the compensation values from the error compensation model, which includes nonlinear equations. An experiment using a double ball-bar is implemented to verify the proposed model.

5축가공기를 활용한 내면 형상 가공용 최적 앵글헤드의 개발 (Development of the Optimized Angle Head for Internal Shape Machining Using Five-Axis Machine Tool)

  • 황종대;김재현;조영태;정윤교;고해주
    • 한국기계가공학회지
    • /
    • 제14권1호
    • /
    • pp.123-129
    • /
    • 2015
  • In general, recent critical studies of five-axis machine have tended to center on the question of effective machining to realize complex shape parts. However, the hydrostatic bearing and journal bearing, both of which are involved in the complex process of dividing the processing of internal precision-shape machining, must be optimized. Although the angle head is designed to machine the internal shape as it approaches the inner diameter of the work piece, research on the angle head in five-axis machining has received only minimal attention in domestic industries. In this study, an angle head which is optimized for effective internal shape machining is developed. In pursuit of this purpose, 3D and 2D designs of the angle head for five-axis machining are devised. Reliability is secured through static performance tests and machining accuracy evaluations of the angle head in keeping with the machining accuracy standard of 0.2mm for hydrostatic bearings.

Collision-free tool orientation optimization in five-axis machining of bladed disk

  • Chen, Li;Xu, Ke;Tang, Kai
    • Journal of Computational Design and Engineering
    • /
    • 제2권4호
    • /
    • pp.197-205
    • /
    • 2015
  • Bladed disk (BLISK) is a vital part in jet engines with a complicated shape which is exclusively machined on a five-axis machine and requires high accuracy of machining. Poor quality of tool orientation (e.g., false tool positioning and unsmooth tool orientation transition) during the five-axis machining may cause collision and machine vibration, which will debase the machining quality and in the worst case sabotage the BLISK. This paper presents a reference plane based algorithm to generate a set of smoothly aligned tool orientations along a tool path. The proposed method guarantees that no collision would occur anywhere along the tool path, and the overall smoothness is globally optimized. A preliminary simulation verification of the proposed algorithm is conducted on a BLISK model and the tool orientation generated is found to be stable, smooth, and well-formed.

공구이동궤적 모델을 이용한 5축 페이스밀링 가공데이터 생성 (Five-axis CL Data Generation by Considering Tool Swept Surface Model in Face Milling of Sculptured Surface)

  • 이정근;박정환
    • 한국CDE학회논문집
    • /
    • 제9권1호
    • /
    • pp.35-43
    • /
    • 2004
  • It is well known that the five-axis machining has advantages of tool accessibility and machined surface quality when compared with conventional three-axis machining. Traditional researches on the five-axis tool-path generation have addressed interferences such as cutter gouging, collision, machine kinematics and optimization of a CL(cutter location) or a cutter position. In the paper it is presented that optimal CL data for a face-milling cutter moving on a tool-path are obtained by incorporating TSS(tool swept surface) model. The TSS model from current CL position to the next CL position is constructed based on machine kinematics as well as cutter geometry, with which the deviation from the design surface can be computed. Then the next CC(cutter-contact) point should be adjusted such that the deviation conforms to given machining tolerance value. The proposed algorithm was implemented and applied to a marine propeller machining, which proved effective from a quantitative point of view. In addition, the algorithm using the TSS can also be applied to avoid cutter convex interferences in general three-axis NC machining.

5-축 CNC 밀링으로의 자유곡면 가공에 관한 연구 (II) 커섭 높이 예측과 공구경로 결정 (A Study on the Machining of Sculptured Surfaces by 5-Axis CNC Milling (ll) The Prediction of Cusp Heights and Determination of Tool Path interval)

  • 조현덕;전용태;양민양
    • 대한기계학회논문집
    • /
    • 제17권8호
    • /
    • pp.2012-2022
    • /
    • 1993
  • For the machining of the sculptured surfaces on 5-axis CNC milling machine, the milling cutter direction vector was determined in the study (I) with 5-axis post-processing. Thus, it was possible to cut the sculptured surfaces on five-axis CNC milling machine with the end mill cutter. Then, for smooth machined surfaces in five-axis machining of free-from surfaces, this study develops an algorithm for prediction of cusp heights. Also, it generates tool path such that the cusp heights are constrained to a constant value or under a certain value. For prediction of the cusp height between two basis points, a common plane, containing the line crossing two basis points and the summation vector of two normal vectors at two basis points, is defined. The cusp height is the maximum value of scallops on the common plane after end mill cutter passes through the common plane. Sculptured surfaces were machined with CINCINNATI MILACRON 5-axis machining center, model 20V-80, using end mill cutter. Cusp heights were verified by 3-dimensional measuring machine with laser scanner, WEGU Messtechnik GmbH.

5축 밀링가공기의 직교 특성을 이용한 역기구학 방정식의 유도 (Inverse Kinematics for Five-axis Machines Using Orthogonal Kinematics Chain)

  • 소범식;정융호
    • 한국CDE학회논문집
    • /
    • 제13권2호
    • /
    • pp.153-161
    • /
    • 2008
  • This paper proposes an efficient algorithm for deriving inverse kinematics equation of 5-axis machine. Because the joint order and direction of 5-axis machine are different for each type of machine, each type of machine needs its own inverse kinematics equation for post-processing of NC data. Also derived inverse kinematics equation may cause problems of indeterminate and inconsistent solution. In order to resolve these problems, we have developed a generic method to derive direct kinematics equation by considering orthogonal joints of 5-axis machines. Using this method, we also have proposed a general algorithm for deriving inverse kinematics equation for various types of 5-axis machines.

5축 NC 기계의 실시간 제어기법 개발을 위한 룰드 서피스 곡률 이론의 적용 연구 (A Study on the Application of the Curvature Theory of Ruled Surfaces for the Development of Five-Axis NC Machine Real-Time Control Algorithm)

  • 김재희;유범상
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.182-189
    • /
    • 2000
  • This paper presents the real time control method of 5-axis NC machine for high precision and productivity based on the curvature theory, of a ruled surface. The trajectory, of NC machine is described by, way of a ruled surface generated by the points on part surface and tool axis direction vector. The curvature theory, of a ruled surface is then applied to deter-mine the motion parameters of the 5-axis machine for control. The controller computes position, orientation, and differential motion parameters of the tool in each sampling period. The real-time approach produces smoother surfaces and requires substantially less machining time compared to conventional off-line approaches. The propose real-time control method based of the curvature theory of a ruled surface may give new methodology of precision 5-axis machine control.

반응표면법을 이용한 5축 임펠러 정삭 가공의 최적화 (Optimization of Finish Cutting Condition of Impeller with Five-Axis Machine by Response Surface Method)

  • 임표;양균의
    • 대한기계학회논문집A
    • /
    • 제31권9호
    • /
    • pp.924-933
    • /
    • 2007
  • An impeller is a important part of turbo-machinery. It has a set of twisted surfaces because it consists of many blades. Five-axis machining is required to produce a impeller because of interference between tool and workpiece. It can obtain good surface integrity and high productivity. This paper proposes finish cutting method for machining impeller with 5-axis machining center and optimization of cutting condition by response surface method. Firstly, cutting methods are selected by consideration of operation characteristics. Secondly, response factors are determined as cutting time and cutting error for prediction of productivity. Experiments are projected by central composite design with axis point. Thirdly, regression linear models are estimated as single surface in the leading edge and as dual surface in the hub surface cutting. Finally, cutting conditions are optimized.

금형의 고정형 5축 가공 시 공구자세 셋업 정보 산출시스템 개발 (Setup Data Generation for Positional 5-axis Machining of Die and Mold)

  • 이정근;양성진;박정환
    • 한국CDE학회논문집
    • /
    • 제13권5호
    • /
    • pp.382-390
    • /
    • 2008
  • Five-axis machining has been applied to manufacture of turbine blades, impellers, marine propellers. Nowadays it extends to mold & die machining, where more productivity as well as added value is expected. The five-axis machining can be divided into positional and continuous, according to the variableness of tool orientation during material removal process. The positional five-axis machining is commonly applied to the regional machining on a whole part surface in mold manufacturing industry, where the tool orientation for each region (area) should be determined to be feasible, that is, avoiding any interference such as machine tool collision, etc. Therefore it is required for a CAM programmer to decide a feasible tool orientation in generating tool-paths on a designated area, because it is a very tedious job to obtain such information by utilizing a commercial CAM system. The developed system generates feasibility data on tool orientation and machining region, which facilitates the CAM programmer's decision on a feasible tool orientation.