• Title/Summary/Keyword: fitting evaluation

Search Result 310, Processing Time 0.025 seconds

Subjective Wearing Assessment and Clothing Pressure depending on the Pattern Reduction Rate of Developed Cycle Pants Using the 3D Human Scan Data (3D 스캔 데이터를 이용하여 개발된 사이클 팬츠 패턴의 축소율에 따른 의복압 및 주관적 착의 평가)

  • Jeong, Yeonhee;Hong, Kyunghi
    • Korean Journal of Human Ecology
    • /
    • v.24 no.2
    • /
    • pp.255-266
    • /
    • 2015
  • In this study, we have developed the ergonomic pattern from the 3D human body reflecting cycling posture and extensibility of the stretch fabrics. Adjusting pressure level in the construction of athlete's tight-fitting stretch garments by reducing the original pattern is a challenging subject, which influence on the performance of the wearer directly. Therefore, in this study, relationships between the reduction rates of the 2D pattern obtained from the 3D human scan and resultant clothing pressure were explored to improve the fit and pressure exerted by reduced clothing pattern. Subjective wear sensations of the experimental garments were rated using a seven-point Likert scale on two consecutive days. While wearing the garments, subjects were asked to take five different postures including waist flexion, sitting and others. A Likert-type scale was used for the evaluation, with 7 points indicating the best fit in tight-fitting pants. Comparing 2/3T-pattern with T-pattern, the latter was superior to 2/3T-pattern in terms of adhere well to the waist and hip area in the 0.032 significance level. T-pattern was superior to 2/3T-pattern in terms of fitting and wear comfort. As results, the pattern obtained from the flexed body reflecting cycling posture already included the contraction and extension of the skin while cycling posture, so that the extra ease for movement and good fit was not need to be considered. The optimized reduction rates were determined with the proposed reduction rate, the resultant pressure range was within the range of $0.5{\sim}3.0gf/cm^2$ at eight locations on the body except front waist band and thigh band.

A Study on the Brassiere Wearing Evaluation for Augmentation of Mammaplasty Patients (시판 유방 확대 수술 환자용 브래지어의 착의 평가)

  • Yi, Kyong-Hwa;Nam, Young-Ran
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.5
    • /
    • pp.737-752
    • /
    • 2018
  • The frequency of breast augmentation surgery continues to increase annually; however, the method of follow-up care varies from hospital to hospital. In particular, many different types of post-operative bras are available in the market. This study evaluated the wearing comfort of various commercial bras that were worn immediately after breast enlargement surgery prior to the manufacture of the bra. According to interviews of medical professionals and market research, five types of brassiere were selected and evaluated by wearing satisfaction, functional performance, and an external appearance test for 6 subjects with breast augmentation surgery. The evaluation questionnaires were based on a 5 point Likert scale with data analyzed using SPSS 20.0. The study results revealed that the bra with the highest degree of satisfaction was CNB (without bra cup) type. However, the use of CNB type showed dissatisfaction in functional evaluation questions regarding breast shaking and material & tactile sensation. In the future, it is necessary to develop a new post-operative brassiere based on a CNB type bra that showed the best evaluation. However, it is also necessary to identify the merits of the other four experimental bras and reflect these advantages.

The Qualitative Study on the Evaluation and the Application of 3D scan and virtual try-on technology (3차원 스캔과 가상 착의 기술의 평가와 활용에 관한 질적연구)

  • Choi, Young-Lim;Nam, Yun-Ja
    • Fashion & Textile Research Journal
    • /
    • v.11 no.3
    • /
    • pp.437-444
    • /
    • 2009
  • According to the activation of the fashion electronic commerce, this research investigated the merits and demerits and improvement plan of the 3D virtual try-on technology using the qualitative research method. This research was performed by interview with 70 evaluation group. The evaluation group of 3D virtual try-on was organized and the fit evaluation process by 3D human body scan and the 3D virtual try-on of the i-Fashion technology center were experienced. This study was performed by interview after the actual and virtual try-on about the casual shirt. The convenience and accuracy of measurement, usability in online shopping, body evaluation, complement of sizing system, and body shape management were discovered as merits. The requirement of high accuracy in sizing and avatar, limits of fabric expression, practical limitation by cost, vexatious of measurement garment, differences between real and virtual fittings, personal information leakage risk, and etc were pointed out as demerits. The mass customization, customized garment connected with medical service, humanized avatar, improved fitting report, entertainment, coordination, wardrobe manager were proposed as improvement plan.

Product development through fit evaluation of yoga tops (착용성 평가를 통한 요가복 상의 개발)

  • Zhang, Cheng;Kim, Jihyeon;Na, Mihyang
    • The Research Journal of the Costume Culture
    • /
    • v.30 no.3
    • /
    • pp.366-380
    • /
    • 2022
  • This study aims to develop the designs and patterns of yoga tops that are better adjusted to suit females in their 30s and 40s. After conducting a comparative analysis of three different popular yoga garments, one yoga top currently on the market was selected. Subsequently, a fit evaluation was conducted on Trail 1-garment α, which was developed body analysis performed based on selected yoga top C, followed by the production of the Trial 2 garment after making adjustments according to the comparative observation results. Based on these results, garment C with the longest top length was evaluated as the best. The results of the evaluation of appearance and fit conducted of Trial 1-garment α compared to those of C showed that Trial 1-garment α was superior in both evaluations. Trial 2-garment β was produced after making improvements on Trial 1-garment α and then placed under identical comparative evaluation condition as Trial 1-garment α. Results showed a significant improvement compared to Trial 1-garment α, and the Trial 2 garment with an additional arm pattern was shown to be superior in shoulder strap width stability, shoulder strap pressure, chest stability, degree of waist pressure, waist comfort, general fitting, and supportiveness.

Correction of Erroneous Model Key Points Extracted from Segmented Laser Scanner Data and Accuracy Evaluation

  • Yoo, Eun Jin;Park, So Young;Yom, Jae-Hong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.611-623
    • /
    • 2013
  • Point cloud data (i.e., LiDAR; Light Detection and Ranging) collected by Airborne Laser Scanner (ALS) system is one of the major sources for surface reconstruction including DEM generation, topographic mapping and object modeling. Recently, demand and requirement of the accurate and realistic Digital Building Model (DBM) increase for geospatial platforms and spatial data infrastructure. The main issues in the object modeling such as building and city modeling are efficiency of the methodology and quality of the final products. Efficiency and quality are associated with automation and accuracy, respectively. However, these two factors are often opposite each other. This paper aims to introduce correction scheme of incorrectly determined Model Key Points (MKPs) regardless of the segmentation method. Planimetric and height locations of the MKPs were refined by surface patch fitting based on the Least-Squares Solution (LESS). The proposed methods were applied to the synthetic and real LiDAR data. Finally, the results were analyzed by comparing adjusted MKPs with the true building model data.

Methods and Sample Size Effect Evaluation for Wafer Level Statistical Bin Limits Determination with Poisson Distributions (포아송 분포를 가정한 Wafer 수준 Statistical Bin Limits 결정방법과 표본크기 효과에 대한 평가)

  • Park, Sung-Min;Kim, Young-Sig
    • IE interfaces
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • In a modern semiconductor device manufacturing industry, statistical bin limits on wafer level test bin data are used for minimizing value added to defective product as well as protecting end customers from potential quality and reliability excursion. Most wafer level test bin data show skewed distributions. By Monte Carlo simulation, this paper evaluates methods and sample size effect regarding determination of statistical bin limits. In the simulation, it is assumed that wafer level test bin data follow the Poisson distribution. Hence, typical shapes of the data distribution can be specified in terms of the distribution's parameter. This study examines three different methods; 1) percentile based methodology; 2) data transformation; and 3) Poisson model fitting. The mean square error is adopted as a performance measure for each simulation scenario. Then, a case study is presented. Results show that the percentile and transformation based methods give more stable statistical bin limits associated with the real dataset. However, with highly skewed distributions, the transformation based method should be used with caution in determining statistical bin limits. When the data are well fitted to a certain probability distribution, the model fitting approach can be used in the determination. As for the sample size effect, the mean square error seems to reduce exponentially according to the sample size.

S-CODE: A Subdivision Based Coding System for CAD Models

  • Takarada, Yosuke;Takeuchi, Shingo;Kawano, Isao;Hotta, Jun;Suzuki, Hiromasa
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.97-109
    • /
    • 2003
  • A large scale polygon models are often used to approximately represent 3D CAD models in Digital Engineering environment such as DMU (Digital Mockups) and network based collaborative design. However, they are not suitable for distribution on the network and for interactive rendering. We introduce a new coding system based on subdivision schemes called S-CODE system. In this system, it is possible to highly compress the model with sufficient accuracy and to view the model efficiently in a level of detail (LOD) fashion. The method is based on subdivision surface fitting by which a subdivision surface and curves which approximate a face of a CAD model are generated. We also apply a subdivision method to analytic surfaces such as conical and cylindrical surfaces. A prototype system is developed and used for evaluation with reasonably complicated data. The results show that the method is useful as a CAD data coding system.

Performance Evaluation of MTF Peak Detection Methods by a Statistical Analysis for Phone Camera Modules

  • Kwon, Jong-Hoon;Rhee, Hyug-Gyo;Ghim, Young-Sik;Lee, Yun-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.150-155
    • /
    • 2016
  • To evaluate the autofocusing performance of recent mobile phone cameras, it is necessary to determine the peak position of the center field MTF (Modulation Transfer Function), -known as the through focus MTF- of the module. However, the MTF peak position found by conventional methods deviates from the ideal position due to the focus scanning resolution of mobile phone cameras. This inaccurate peak position results in false judgements of the optical performance, leading to yield losses or customer complaints. An increase in the focus scanning resolution can address this problem, but the manufacturing UPH (Unit per Hour) level will also unfortunately increase as well, resulting in a loss of manufacturing capabilities. In this paper, several fitting models are studied to find an accurate MTF peak position within a short period of time. With an analysis of a large amount of manufacturing data, it is demonstrated that the fitting methods can reduce false judgements and simultaneously increase the capabilities of the manufacturing system.

Development of Machine Vision System and Dimensional Analysis of the Automobile Front-Chassis-Module

  • Lee, Dong-Mok;Yang, Seung-Han;Lee, Sang-Ryong;Lee, Young-Moon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2209-2215
    • /
    • 2004
  • In the present research work, an automated machine vision system and a new algorithm to interpret the inspection data has been developed. In the past, the control of tolerance of front-chassis-module was done manually. In the present work a machine vision system and required algorithm was developed to carryout dimensional evaluation automatically. The present system is used to verify whether the automobile front-chassis-module is within the tolerance limit or not. The directional ability parameters related with front-chassis-module such as camber, caster, toe and king-pin angle are also determined using the present algorithm. The above mentioned parameters are evaluated by the pose of interlinks in the assembly of an automobile front-chassis-module. The location of ball-joint center is important factor to determine these parameters. A method to determine the location of ball-joint center using geometric features is also suggested in this paper. In the present work a 3-D best fitting method is used for determining the relationship between nominal design coordinate system and the corresponding feature coordinate system.

Estimation of Fish Habitat Suitability Index for Stream Water Quality - Case Species of Zacco platypus - (하천 수질에 대한 어류의 서식처적합도지수 산정 - 피라미를 대상으로 -)

  • Hong, Rokgi;Park, Jinseok;Jang, Seongju;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.89-100
    • /
    • 2021
  • The conservation of stream habitats has been gaining more public attention and fish habitat suitability index (HSI) is an important measure for ecological stream habitat assessment. The fish habitat preference is affected not only by physical stream conditions but also by water quality of which HSI was not available due to the lack of field data. The purpose of this study is to estimate the HSI of Zacco platypus for water quality parameters of water temperature, dissolved oxygen (DO), and biochemical oxygen demand (BOD) using the water environment monitoring data provided by the Ministry of Environment (ME). Fish population data merged with water quality were constructed by spatio-temporal matching of nationwide water quality monitoring data with bio-monitoring data of the ME. Two types of the HSI were calculated by the Instream Flow and Aquatic Systems Group (IFASG) method and probability distribution (Weibull) fitting for the four major river basins. Both the HSIs by the IFASG and Weibull fitting appeared to represent the overall distribution and magnitude of fish population and this can be used in stream fish habitat evaluation considering water quality.