• Title/Summary/Keyword: fish taxonomy

Search Result 45, Processing Time 0.023 seconds

The Complete Mitochondrial Genome and Molecular Phylogeny of the Flathead Platycephalus cultellatus Richardson, 1846 from Vietnam (Teleostei; Scorpaeniformes) (베트남 Platycephalus cultellatus Richardson, 1846 (Teleostei; Scorpaeniformes)의 전장 미토콘드리아 유전체와 분자계통)

  • Tran, Biet Thanh;Nguyen, Tu Van;Choi, Youn Hee;Kim, Keun-Yong;Heo, Jung Soo;Kim, Keun-Sik;Ryu, Jung-Hwa;Kim, Kyeong Mi;Yoon, Moongeun
    • Korean Journal of Ichthyology
    • /
    • v.33 no.4
    • /
    • pp.217-225
    • /
    • 2021
  • The family Platycephalidae is a taxonomic group of economically important demersal flathead fishes that predominantly occupy tropical or temperate estuaries and coastal environments of the Indo-Pacific oceans and the Mediterranean Sea. In this study, we for the first time analyzed the complete mitochondrial genome (mitogenome) of the flathead Platycephalus cultellatus Richardson, 1846 from Vietnam by Next Generation Sequencing method. Its mitogenome was 16,641 bp in total length, comprising 13 protein-coding genes (PCGs), two ribosomal RNA genes, and 22 transfer RNA genes. The gene composition and order of the mitogenome were identical to those of typical vertebrates. The phylogenetic trees were reconstructed based on the concatenated nucleotide sequence matrix of 13 PCGs and the partial sequence of a DNA barcoding marker, cox1 in order to determine its molecular phylogenetic position among the order Scorpaeniformes. The phylogenetic result revealed that P. cultellatus formed a monophyletic group with species belonging to the same family and consistently clustered with one nominal species, P. indicus, and two Platycephalus sp. specimens. Besides, the cox1 tree confirmed the taxonomic validity of our specimen by forming a monophyletic clade with its conspecific specimens. The mitogenome of P. cultellatus analyzed in this study will contribute valuable information for further study on taxonomy and phylogeny of flatheads.

Review of Fish Name on the Fishes of the Family Mugilidae in Korea and Resource Utilization (우리나라 숭어과 어류의 어명 및 자원 활용에 대한 고찰)

  • Ko, Eun Young;Park, Jong Oh;Lee, Kyoung Seon
    • Journal of Marine Life Science
    • /
    • v.4 no.2
    • /
    • pp.96-105
    • /
    • 2019
  • The mugilidae fishes are common euryhaline species that live in coastal marine waters to freshwater areas. The taxonomy and nomenclature of the mugilidae fishes still remain unresolved because of their morphological similarities. Among the mugilidae fishes, most commonly consumed in Korea, are grey mullet (Mugil cephalus) and red lip mullet (Chelon haematocheilus). It is generally called 'mullet' without distinguishing between two mullets. Therefore, the aim of this study is to examine the scientific names and common names of mullet species used in Korea from the domestic journals and Korean old documents. The scientific name of grey mullet is M. cephalus, but that of redlip mullet is C. haematocheilus. But the genus of redlip mullet is still mixed with Chelon, Mugil, and Liza. The standard name of two mullet is not distinguished in the Korean dictionary, but they were clearly distinguished in the Japanese, English, and Chinese dictionaries. In the ancient Korean references, the mullet was called 'Chieo' or 'Sueo'. In most of the old literature, the distinction between grey mullet and redlip mullet is not clear. However, in Jasaneobo, it was written separately from grey mullet and redlip mullet, and attaching "ga" was different from now. The Korean standard name of redlip mullet is 'gasungeo', however, the fishermen in Jeollado and Gyoungsangdo call it 'chamsungeo'. Considering the negative perception of 'ga' character, it is proposed to change 'cham(眞)' instead of 'ga(假)' to improve economic value of red lip mullet.

Occurrence and diet analysis of sea turtles in Korean shore

  • Kim, Jihee;Kim, Il-Hun;Kim, Min-Seop;Lee, Hae Rim;Kim, Young Jun;Park, Sangkyu;Yang, Dongwoo
    • Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.203-217
    • /
    • 2021
  • Background: Sea turtles, which are globally endangered species, have been stranded and found as bycatch on the Korean shore recently. More studies on sea turtles in Korea are necessary to aid their conservation. To investigate the spatio-temporal occurrence patterns of sea turtles on the Korean shore, we recorded sampling locations and dates, identified species and sexes and measured sizes (maximum curved carapace length; CCL) of collected sea turtles from the year 2014 to 2020. For an analysis of diets through stomach contents, we identified the morphology of the remaining food and extracted DNA, followed by amplification, cloning, and sequencing. Results: A total of 62 stranded or bycaught sea turtle samples were collected from the Korean shores during the study period. There were 36 loggerhead turtles, which were the dominant species, followed by 19 green turtles, three hawksbill turtles, two olive ridley turtles, and two leatherback turtles. The highest numbers were collected in the year 2017 and during summer among the seasons. In terms of locations, most sea turtles were collected from the East Sea, especially from Pohang. Comparing the sizes of collected sea turtles according to species, the average CCL of loggerhead turtles was 79.8 cm, of green turtles was 73.5 cm, and of the relatively large leatherback turtle species was 126.2 cm. In most species, the proportion of females was higher than that of males and juveniles, and was more than 70% across all the species. Food remains were morphologically identified from 19 stomachs, mainly at class level. Seaweeds were abundant in stomachs of green turtles, and Bivalvia was the most detected food item in loggerhead turtles. Based on DNA analysis, food items from a total of 26 stomachs were identified to the species or genus level. The gulfweed, Sargassum thunbergii, and the kelp species, Saccharina japonica, were frequently detected from the stomachs of green turtles and the jellyfish, Cyanea nozakii, the swimming crab, Portunus trituberculatus, and kelps had high frequencies of occurrences in loggerhead turtles. Conclusions: Our findings support those of previous studies suggesting that sea turtles are steadily appearing in the Korean sea. In addition, we verified that fish and seaweed, which inhabit the Korean sea, are frequently detected in the stomach of sea turtles. Accordingly, there is a possibility that sea turtles use the Korean sea as feeding grounds and habitats. These results can serve as basic data for the conservation of globally endangered sea turtles.

An epidemiological study of metagonimiasis along the upper reaches of the Namhan River (남한강 상류의 Metagonimus 유행에 대한 연구)

  • Chai, Jong-Yil;Huh, Sun;Yu, Jae-Ran;Kook, Jin-A;Jung, Kyung-Chun;Park, Eun-Chan;Sohn, Woon-Mok;Hong, Sung-Tae;Lee, Soon-Hyung
    • Parasites, Hosts and Diseases
    • /
    • v.31 no.2
    • /
    • pp.99-108
    • /
    • 1993
  • An epidemiological study of Metogonimus infection was undertaken along the upper reaches of the Nmhn River, with special consideration on the species (type) of the worms collected from humans. Eggs of Metogonimus spp. were detected from 15 (9.7%) of 154 people examined in Umsong-gun, and from each Infected person (5 cases) 6.015- 24,060 worms (mean 13,2331 were recovered after treatment with praziquantel (10 mg/kg). Eggs were also detected from 37 (48.1% of 77 people In Yongwol-gun, from whom (27 casesl 1-4,965 worms (mean 1,2151 were collected. The worm from Umsong-gun consisted of both Metagonimus Miyata type and Metagonimus takohashii, whereas those from Yongwol-gun consisted of only Metqsonimus Miyata type. When the uterine eggs of the two kinds and M. yokogawoi (obtained from people In Tamjin River basin) were morphologically compared, it was suggested that the egg size should be a good Indicator for discrlmination of the species or type. The source of human Infection was proved to be fresh water fleshes: 49 of 52 Znsco plntvpus examined, 6 of 8 Hemibcrbus loniroskis, 13 of 15 Pseunogobio esuinl:, 4 of 6 Odontobutis obscura intemfptn, and 17 of 18 Corqssiw carassiw were found Infected with Metosonimw metacercariae. From the results, it is concluded that the upper reaches of the Namhan River are endemic foci of Metogonimn Miyata type and M. takahashii.

  • PDF

Review of the Korean Indigenous Species Investigation Project (2006-2020) by the National Institute of Biological Resources under the Ministry of Environment, Republic of Korea (한반도 자생생물 조사·발굴 연구사업 고찰(2006~2020))

  • Bae, Yeon Jae;Cho, Kijong;Min, Gi-Sik;Kim, Byung-Jik;Hyun, Jin-Oh;Lee, Jin Hwan;Lee, Hyang Burm;Yoon, Jung-Hoon;Hwang, Jeong Mi;Yum, Jin Hwa
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.1
    • /
    • pp.119-135
    • /
    • 2021
  • Korea has stepped up efforts to investigate and catalog its flora and fauna to conserve the biodiversity of the Korean Peninsula and secure biological resources since the ratification of the Convention on Biological Diversity (CBD) in 1992 and the Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits (ABS) in 2010. Thus, after its establishment in 2007, the National Institute of Biological Resources (NIBR) of the Ministry of Environment of Korea initiated a project called the Korean Indigenous Species Investigation Project to investigate indigenous species on the Korean Peninsula. For 15 years since its beginning in 2006, this project has been carried out in five phases, Phase 1 from 2006-2008, Phase 2 from 2009-2011, Phase 3 from 2012-2014, Phase 4 from 2015-2017, and Phase 5 from 2018-2020. Before this project, in 2006, the number of indigenous species surveyed was 29,916. The figure was cumulatively aggregated at the end of each phase as 33,253 species for Phase 1 (2008), 38,011 species for Phase 2 (2011), 42,756 species for Phase 3 (2014), 49,027 species for Phase 4 (2017), and 54,428 species for Phase 5(2020). The number of indigenous species surveyed grew rapidly, showing an approximately 1.8-fold increase as the project progressed. These statistics showed an annual average of 2,320 newly recorded species during the project period. Among the recorded species, a total of 5,242 new species were reported in scientific publications, a great scientific achievement. During this project period, newly recorded species on the Korean Peninsula were identified using the recent taxonomic classifications as follows: 4,440 insect species (including 988 new species), 4,333 invertebrate species except for insects (including 1,492 new species), 98 vertebrate species (fish) (including nine new species), 309 plant species (including 176 vascular plant species, 133 bryophyte species, and 39 new species), 1,916 algae species (including 178 new species), 1,716 fungi and lichen species(including 309 new species), and 4,812 prokaryotic species (including 2,226 new species). The number of collected biological specimens in each phase was aggregated as follows: 247,226 for Phase 1 (2008), 207,827 for Phase 2 (2011), 287,133 for Phase 3 (2014), 244,920 for Phase 4(2017), and 144,333 for Phase 5(2020). A total of 1,131,439 specimens were obtained with an annual average of 75,429. More specifically, 281,054 insect specimens, 194,667 invertebrate specimens (except for insects), 40,100 fish specimens, 378,251 plant specimens, 140,490 algae specimens, 61,695 fungi specimens, and 35,182 prokaryotic specimens were collected. The cumulative number of researchers, which were nearly all professional taxonomists and graduate students majoring in taxonomy across the country, involved in this project was around 5,000, with an annual average of 395. The number of researchers/assistant researchers or mainly graduate students participating in Phase 1 was 597/268; 522/191 in Phase 2; 939/292 in Phase 3; 575/852 in Phase 4; and 601/1,097 in Phase 5. During this project period, 3,488 papers were published in major scientific journals. Of these, 2,320 papers were published in domestic journals and 1,168 papers were published in Science Citation Index(SCI) journals. During the project period, a total of 83.3 billion won (annual average of 5.5 billion won) or approximately US $75 million (annual average of US $5 million) was invested in investigating indigenous species and collecting specimens. This project was a large-scale research study led by the Korean government. It is considered to be a successful example of Korea's compressed development as it attracted almost all of the taxonomists in Korea and made remarkable achievements with a massive budget in a short time. The results from this project led to the National List of Species of Korea, where all species were organized by taxonomic classification. Information regarding the National List of Species of Korea is available to experts, students, and the general public (https://species.nibr.go.kr/index.do). The information, including descriptions, DNA sequences, habitats, distributions, ecological aspects, images, and multimedia, has been digitized, making contributions to scientific advancement in research fields such as phylogenetics and evolution. The species information also serves as a basis for projects aimed at species distribution and biological monitoring such as climate-sensitive biological indicator species. Moreover, the species information helps bio-industries search for useful biological resources. The most meaningful achievement of this project can be in providing support for nurturing young taxonomists like graduate students. This project has continued for the past 15 years and is still ongoing. Efforts to address issues, including species misidentification and invalid synonyms, still have to be made to enhance taxonomic research. Research needs to be conducted to investigate another 50,000 species out of the estimated 100,000 indigenous species on the Korean Peninsula.