• Title/Summary/Keyword: fish robot

Search Result 57, Processing Time 0.029 seconds

Design and Control of a Biomimetic Fish Robot (생체 모방 로봇 물고기의 설계와 제어에 관한 연구)

  • Kim, Young-Jin;Kim, Seung-Jae;Yang, Kyung-Sun;Lee, Jeong-Min;Yim, Chung-Hyuk;Kim, Dong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • This paper introduces the mechanical design, fabrication, and control of a biomimetic fish robot whose driving motions resemble a real fish's flexibility and movement. This robot uses two motors create flexible movement like that of a fish. Several schemes, such as neutral buoyancy, fast underwater swimming, and direction changes, are introduced. The tail of the fish robot is made of a polymer material for flexible movement. The interior of the tail contains a joint and a wire. A sine wave command was applied to the tail to produce motion resembling a real fish swimming, and a buoy control device was installed. The up and down motion of the robot fish was controlled using this device.

Development of Biomimetic Underwater Vehicle using Single Actuator (단일 구동기로 수중 이동이 가능한 수중 이동체 개발)

  • Jun, Myoung Jae;Kim, Dong Hyung;Choi, Hyeun Seok;Han, Chang Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.571-577
    • /
    • 2016
  • In this paper, we propose a novel propulsion method for a Biomimetic underwater robot, which is a bio-inspired approach. The proposed propulsion method mimics the pectoral fins of a real fish. Pectoral fins of real fish are able to propel and change direction. We designed the propulsion mechanism of 1 D.O.F. that has two functions (propel and change direction). We named this propulsion system 'Flipper'. The proposed propulsion method can control forward, pitch and yaw motion using the Flipper. We made an experimental underwater robot system and verified the proposed propulsion method. We measured its maximum speed and turning motion using an experimental underwater robot system. We also analyzed the thrust force from the maximum speed, using the thrust equation. Experimental results showed that our propulsion method enabled the thrust system of the biomimetic robot.

Fish-eye camera calibration and artificial landmarks detection for the self-charging of a mobile robot (이동로봇의 자동충전을 위한 어안렌즈 카메라의 보정 및 인공표지의 검출)

  • Kwon, Oh-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.278-285
    • /
    • 2005
  • This paper describes techniques of camera calibration and artificial landmarks detection for the automatic charging of a mobile robot, equipped with a fish-eye camera in the direction of its operation for movement or surveillance purposes. For its identification from the surrounding environments, three landmarks employed with infrared LEDs, were installed at the charging station. When the robot reaches a certain point, a signal is sent to the LEDs for activation, which allows the robot to easily detect the landmarks using its vision camera. To eliminate the effects of the outside light interference during the process, a difference image was generated by comparing the two images taken when the LEDs are on and off respectively. A fish-eye lens was used for the vision camera of the robot but the wide-angle lens resulted in a significant image distortion. The radial lens distortion was corrected after linear perspective projection transformation based on the pin-hole model. In the experiment, the designed system showed sensing accuracy of ${\pm}10$ mm in position and ${\pm}1^{\circ}$ in orientation at the distance of 550 mm.

Realization of Fairy Tale - Robot Aquarium Display System with Visitor Interaction (관람객과 상호 교감하는 전래동화-로봇의 수중무대 연출시스템 구현)

  • Shin, Kyoo-Jae
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1180-1187
    • /
    • 2018
  • This paper had implemented the underwater stage through interaction with fish robots and visitors in the background of traditional fairy tales using 3D floating hologram in an aquarium. The recognition of the object position of the spectator and the underwater robot were performed using the color recognition algorithm. Also, the position tracking algorithm was proposed to follow the object of the visitor and the original fairy tale. This experimental system consists of fish robot, camera, KIOSK for underwater robot control and beam project for underwater imaging. This experiment was carried out by the National Busan Science Museum, and it had satisfied the performance of the underwater stage.

Fish School Simulation for Khepera Robot

  • Kim, Kyung-Hwan;Keigo, Watanabe
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.168.4-168
    • /
    • 2001
  • A great many species of fish congregate in schools, reducing the risk of being eaten by predators and giving one of the considerable survival advantages for fishes. Such a fish school is self-organized only due to individual behaviors for matching the speed and direction with the neighboring fishes. It is interesting to simulate these fish school by small robots, because we can understand how the group structure emerges from the interaction among neighboring individuals. We use a nice simulator for Khepera robot presented by Oliver Michel. It is shown that the Khepera simulator is easily applied to fish school due to the algorithm introduced by I Aoki. The simulator includes sensor noise so appropriately that the simulator can be transferred easily to the real environment. The results of simulation are given as follows: (1) The stability as a group is shown by plotting mean deviations from the center of group ...

  • PDF

Experimental Parameter Identification and Performance Analysis of a Fish Robot with Ostraciiform Swimming Mode using Rigid Caudal Fins (고체형 꼬리 지느러미로 오스트라키폼 유영을 하는 물고기 로봇의 패러미터 식별 및 성능 분석)

  • Chan, Wai Leung;Lee, Gi-Gun;Kim, Byung-Ha;Choi, Jung-Min;Kang, Tae-Sam
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.3
    • /
    • pp.197-208
    • /
    • 2010
  • The ostraciiform swimming mode allows the simplest mechanical design and control for underwater vehicle swimming. Propulsion is achieved via the flapping of caudal fin without the body undulatory motion. In this research, the propulsion of underwater vehicles by ostraciiform swimming mode is explored experimentally using an ostraciiform fish robot and some rigid caudal fins. The effects of caudal fin flapping frequency and amplitude on the cruising performance are studied in particular. A theoretical model of propulsion using rigid caudal fin is proposed and identified with the experimental data. An experimental method to obtain the drag coefficient and the added mass of the fish robot is also proposed.

Optimization of Input Parameters by Using DOE for Dynamic Analysis of Bio-inspired Robotic Fish 'Ichthus' (생체모방형 물고기 로봇 '익투스'의 동적 해석을 위한 DOE를 이용한 입력파라미터 최적화)

  • Chung, Chang-Hyun;Lee, Sang-Hyo;Kim, Kyoung-Sik;Cha, You-Sung;Ryuh, Young-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.799-803
    • /
    • 2010
  • Recently, there is a rising interest on studying bio-inspired robotic fish because of real fish's great maneuverability and high energy efficiency. However, the researches about the robotic fish have not been done so much and there are still lots of problems to use them in the real environment such as in the river. This paper describes a bio-inspired robotic fish 'Ichthus' which is developed in KITECH and has 3 DOF propulsive mechanism. We develop the dynamic motion equation of 'Ichthus' in the underwater environment and analyze response characteristics of 'Ichthus' according to the input parameters of tail fin's amplitude and oscillation frequency. Then we propose control parameters at the various velocities. These parameters are useful to increase energy efficiency and it can be used when the fish robot moves in the real environment, for example, we can propose proper amplitude and oscillation frequency when the fish robot passes through the narrow space between obstacles.