• Title/Summary/Keyword: first-order shear deformation

Search Result 445, Processing Time 0.028 seconds

Wave propagation analysis of carbon nanotubes reinforced composite plates

  • Mohammad Hosseini;Parisa Chahargonbadizade;Mohammadreza Mofidi
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.335-354
    • /
    • 2023
  • In this study, analysis of wave propagation characteristics for functionally graded carbon nanotube-reinforced composite (FG-CNTRC) nanoplates is performed using first-order shear deformation theory (FSDT) and nonlocal strain gradient theory. Uniform distribution (UD) and three types of functionally graded distributions of carbon nanotubes (CNTs) are assumed. The effective mechanical properties of the FG-CNTRC nanoplate are assumed to vary continuously in the thickness direction and are approximated based on the rule of mixture. Also, the governing equations of motion are derived via the extended Hamilton's principle. In numerical examples, the effects of nonlocal parameter, wavenumber, angle of wave propagation, volume fractions, and carbon nanotube distributions on the wave propagation characteristics of the FG-CNTRC nanoplate are studied. As represented in the results, it is clear that the internal length-scale parameter has a remarkable effect on the wave propagation characteristics resulting in significant changes in phase velocity and natural frequency. Furthermore, it is observed that the strain gradient theory yields a higher phase velocity and frequency compared to those obtained by the nonlocal strain gradient theory and classic theory.

Modeling of truncated nanocompositeconical shell structures for dynamic stability response

  • S.M.R. Allahyari;M. Shokravi;T.T. Murmy
    • Structural Engineering and Mechanics
    • /
    • v.91 no.3
    • /
    • pp.325-334
    • /
    • 2024
  • This paper deals with the dynamic buckling behavior of truncated conical shells composed of carbon nanotube composites, an important area of study in view of their very wide engineering applications in aerospace industries. In this regard, the effective material properties of the nanocomposite have been computed using the Mori-Tanaka model, which has already been established for such analyses. The motion equations ruling the structure's behavior are derived using first order shear deformation theory, Hamilton's principle, and energy method. This will provide adequate background information on its dynamic response. In an effort to probe the dynamic instability region of the structure, differential quadrature method combined with Bolotin's method will be adopted to tackle the resulting motion equations, which enables efficient and accurate analysis. This work considers the effect of various parameters in the geometrical parameters and the volume fraction of CNTs on the structure's DIR. Specifically, it became clear that increasing the volume fraction of CNTs shifted the frequency range of the DIR to higher values, indicating the significant role of nanocomposite composition regarding structure stability.

Nonlinear resonance of magneto-electro-thermal-elastic plates with geometric imperfection

  • Yin-Ping Li;Gui-Lin She
    • Computers and Concrete
    • /
    • v.34 no.3
    • /
    • pp.267-277
    • /
    • 2024
  • In this article, the primary resonance characteristic of magneto-electro-elastic plates is analyzed, in which the geometric imperfection, thermal effect and shear deformation are taken into account, Applying Hamilton's principle, derivation of nonlinear motion equations is performed. Through solving these equations according to the modified Lindstedt Poincare method, the impacts of external electric voltage, magnetic potential, boundary conditions, temperature changes, geometric imperfection and aspect ratio on the resonance behaviors of MEE plates are examined. It can be found that, as the electric potential rises, the resonance position will be advanced. As the magnetic potential goes up, the resonance frequency of the plates increases, thus delaying the resonance position. As the initial geometric imperfection rises, the resonance position does not change, and the hard spring properties of the plates gradually weaken.

Stochastic thermo-mechanically induced post buckling response of elastically supported nanotube-reinforced composite beam

  • Chaudhari, Virendra Kumar;Shegokar, Niranjan L.;Lal, Achchhe
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.585-611
    • /
    • 2017
  • This article covenants with the post buckling witticism of carbon nanotube reinforced composite (CNTRC) beam supported with an elastic foundation in thermal atmospheres with arbitrary assumed random system properties. The arbitrary assumed random system properties are be modeled as uncorrelated Gaussian random input variables. Unvaryingly distributed (UD) and functionally graded (FG) distributions of the carbon nanotube are deliberated. The material belongings of CNTRC beam are presumed to be graded in the beam depth way and appraised through a micromechanical exemplary. The basic equations of a CNTRC beam are imitative constructed on a higher order shear deformation beam (HSDT) theory with von-Karman type nonlinearity. The beam is supported by two parameters Pasternak elastic foundation with Winkler cubic nonlinearity. The thermal dominance is involved in the material properties of CNTRC beam is foreseen to be temperature dependent (TD). The first and second order perturbation method (SOPT) and Monte Carlo sampling (MCS) by way of CO nonlinear finite element method (FEM) through direct iterative way are offered to observe the mean, coefficient of variation (COV) and probability distribution function (PDF) of critical post buckling load. Archetypal outcomes are presented for the volume fraction of CNTRC, slenderness ratios, boundary conditions, underpinning parameters, amplitude ratios, temperature reliant and sovereign random material properties with arbitrary system properties. The present defined tactic is corroborated with the results available in the literature and by employing MCS.

The buckling of rectangular plates with opening using a polynomial method

  • Muhammad, T.;Singh, A.V.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.2
    • /
    • pp.151-168
    • /
    • 2005
  • In this paper an energy method is presented for the linear buckling analysis of first order shear deformable plates. The displacement fields are defined in terms of the shape functions, which correspond to a set of predefined points and are composed of significantly high order polynomials. The locations of these points are found by mapping the geometry using the naturalized coordinates and bilinear shape functions. In order to evaluate the method, fully clamped and simply supported rectangular plates subjected to uniform uniaxial compressive loading on two opposite edges of the plate are investigated thoroughly and the results are compared with the exact solution given in the monograph of Timoshenko and Gere (1961). The method is extended to the analysis of perforated plates, wherein the negative stiffness computed over the opening area from in-plane and out-of-plane deformation modes is superimposed to the stiffness of the full plate. Numerical results are then favorably compared with those obtained by finite element methods. Other cases such as; rectangular plates with eccentrically located openings of different shapes are studied and reported in this paper with regards to the effect of aspect ratio, hole size, and hole position on the buckling. For a square plate with a large circular opening at the center, diameter being 80 percent of the length, the present method yields buckling coefficient 12.5 percent higher than the one from the FEM.

Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties

  • Lal, Achchhe;Singh, B.N.;Kumar, Rakesh
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.199-222
    • /
    • 2007
  • Composite laminated structures supported on elastic foundations are being increasingly used in a great variety of engineering applications. Composites exhibit larger dispersion in their material properties compared to the conventional materials due to large number of parameters associated with their manufacturing and fabrication processes. And also the dispersion in elastic foundation stiffness parameter is inherent due to inaccurate modeling and determination of elastic foundation properties in practice. For a better modeling of the material properties and foundation, these are treated as random variables. This paper deals with effects of randomness in material properties and foundation stiffness parameters on the free vibration response of laminated composite plate resting on an elastic foundation. A $C^0$ finite element method has been used for arriving at an eigen value problem. Higher order shear deformation theory has been used to model the displacement field. A mean centered first order perturbation technique has been employed to handle randomness in system properties for obtaining the stochastic characteristic of frequency response. It is observed that small amount of variations in random material properties and foundation stiffness parameters significantly affect the free vibration response of the laminated composite plate. The results have been compared with those available in the literature and an independent Monte Carlo simulation.

Elastic wave phenomenon of nanobeams including thickness stretching effect

  • Eyvazian, Arameh;Zhang, Chunwei;Musharavati, Farayi;Khan, Afrasyab;Mohamed, Abdeliazim Mustafa
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.271-280
    • /
    • 2021
  • The present work deals with an investigation on longitudinal wave propagation in nanobeams made of graphene sheets, for the first time. The nanobeam is modelled via a higher-order shear deformation theory accounts for both higher-order and thickness stretching terms. The general nonlocal strain gradient theory including nonlocality and strain gradient characteristics of size-dependency in order is used to examine the small-scale effects. This model has three-small scale coefficients in which two of them are for nonlocality and one of them applied for gradient effects. Hamilton supposition is applied to obtain the governing motion equation which is solved using a harmonic solution procedure. It is indicated that the longitudinal wave characteristics of the nanobeams are significantly influenced by the nonlocal parameters and strain gradient parameter. It is shown that higher nonlocal parameter is more efficient than lower nonlocal parameter to change longitudinal phase velocities, while the strain gradient parameter is the determining factor for their efficiency on the results.

Superharmonic vibrations of sandwich beams with viscoelastic core layer with the multiple scale method

  • Benaoum, Abdelhak;Youzera, Hadj;Abualnour, Moussa;Houari, Mohammed Sid Ahmed;Meftah, Sid Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.727-736
    • /
    • 2021
  • In this work, mathematical modeling of the passive vibration controls of a three-layered sandwich beam under hard excitation is developed. Kelvin-Voigt Viscoelastic model is considered in the core. The formulation is based on the higher-order zig-zag theories where the normal and shear deformations are taken into account only in the viscoelastic core. The dynamic behaviour of the beam is represented by a complex highly nonlinear ordinary differential equation. The method of multiple scales is adopted to solve the analytical frequency-amplitude relationships in the super-harmonic resonance case. Parametric studies are carried out by using HSDT and first-order deformation theory by considering different geometric and material parameters.

Modeling techniques for active shape and vibration control of macro-fiber composite laminated structures

  • Zhang, Shun-Qi;Chen, Min;Zhao, Guo-Zhong;Wang, Zhan-Xi;Schmidt, Rudiger;Qin, Xian-Sheng
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.633-641
    • /
    • 2017
  • The complexity of macro-fiber composite (MFC) materials increasing the difficulty in simulation and analysis of MFC integrated structures. To give an accurate prediction of MFC bonded smart structures for the simulation of shape and vibration control, the paper develops a linear electro-mechanically coupled static and dynamic finite element (FE) models based on the first-order shear deformation (FOSD) hypothesis. Two different types of MFCs are modeled and analyzed, namely MFC-d31 and MFC-d33, in which the former one is dominated by the $d_{31}$ effect, while the latter one by the $d_{33}$ effect. The present model is first applied to an MFC-d33 bonded composite plate, and then is used to analyze both active shape and vibration control for MFC-d31/-d33 bonded plate with various piezoelectric fiber orientations.

A hybrid DQ-TLBO technique for maximizing first frequency of laminated composite skew plates

  • Vosoughi, Ali R.;Malekzadeh, Parviz;Topal, Umut;Dede, Tayfun
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.509-516
    • /
    • 2018
  • The differential quadrature (DQ) and teaching-learning based optimization (TLBO) methods are coupled to introduce a hybrid numerical method for maximizing fundamental natural frequency of laminated composite skew plates. The fiber(s) orientations are selected as design variable(s). The first-order shear deformation theory (FSDT) is used to obtain the governing equations of the plate. The equations of motion and the related boundary conditions are discretized in space domain by employing the DQ method. The discretized equations are transferred from the time domain into the frequency domain to obtain the fundamental natural frequency. Then, the DQ solution is coupled with the TLBO method to find the maximum frequency of the plate and its related optimum stacking sequences of the laminate. Convergence and applicability of the proposed method are shown and the optimum fundamental frequency parameter of the plates with different skew angle, boundary conditions, number of layers and aspect ratio are obtained. The obtained results can be used as a benchmark for further studies.