• Title/Summary/Keyword: first-order perturbation

Search Result 136, Processing Time 0.031 seconds

Performance Management of Communication Networks for Computer Intergrated Manufacturing (컴퓨터 통합 생산을 위한 통신망의 성능 관리)

  • Lee, S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.126-137
    • /
    • 1994
  • Performance management of computer networks is intended to improve a given network performance in order for more efficient information exchange between subsystems of an integrated large-scale system. Importance of perfomance management is growing as many functions of the large- scale system depend on the quality of communication services provided by the network. The role of performance management is to manipulate the adjustable protocol parameters on line so that the network can adapt itself to a dynamic environment. This can be divided into two subtasks : performance evaluation to find how changes in protocol parameters affect the network performance and decision making to determine the magnitude and direction of parameter adjustment. This paper is the first part of the two papers focusing on conceptual design, development, and evaluation of performance management for token bus networks. This paper specifically deals with the task of performance evaluation which utilizes the principle of perturbation analysis of discrete event dynamic systems. The developed algorithm can estimate the network performance under a perturbed protocol parameter setting from observations of the network operations under a nominal parameter setting.

  • PDF

Rotordynamic Analysis of Compressor Labyrinth Seals (압축기용 라비린스 실의 동특성 해석)

  • 하태웅;이안성
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.849-855
    • /
    • 1998
  • An analysis of lateral hydrodynamic forces of compressor labyrinth seals is presented. Basic equations are derived using a two-control-volume model for compressible flow. Blasius' wall friction-factor formula and jet flow theory are used for the calculaton of wall shear stresses and recirculation velocity in the cavity. Linearized zeroth-order and first-order perturbation equations are developed for a small motion about the centered position by expansion in the eccentricity ratio. Integraton of the resultant first-order pressure distribution over the seal defines the rotordynamic coefficients. As an application a rotordynamic analysis of the balance drum labyrinth seal found in an ethylene regrigeration copmressor is carried out. The rotordynamic characteristic results of the labyrinth seal are presented and compared with other types of seals, honeycomb seal and smooth seal.

  • PDF

Rotordynamic and Leakage Analysis for Eccentric Annular Seal (편심된 실의 누설량 및 동특성계수 해석)

  • 하태웅;이용복;김창호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.528-534
    • /
    • 2001
  • Basic equations and its solution procedure are derived for the analysis of an annular pump seal in which the rotor has a large static displacement from the centered position. The Bulk-flow is assumed for a control volume set in the seal clearance and the flow is assumed to be completely turbulent in axial and circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about an eccentric position. Flow variables are expanded by using Fourier series for the solution procedure. Integration of the resultant first-order pressure distribution along and around the seal defines the 12 elements of rotordynamic coefficients of the eccentric annular pump seal. The results of leakage and rotordynamic coefficients are presented and compared with the Marquette's experimental results and the San Andres' theoretical analysis.

  • PDF

Rotordynamic and Leakage Analysis for Stepped-Labyrinth Gas Seal (압축기용 계단식 래버린스 실의 누설 및 동특성해석)

  • Ha, Tae-Woong;Lee, An-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1084-1089
    • /
    • 2000
  • The basic equations are derived for the analysis of a stepped labyrinth gas seal which are generally used in high performance compressors, gas turbines, and steam turbines. The Bulk-flow is assumed for a single cavity control volume and the flow is assumed to be completely turbulent in circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the single cavity control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the stepped labyrinth gas seal. The leakage and rotordynamic characteristic results of the stepped labyrinth gas seal are presented and compared with Scharrer's theoretical analysis using Blasius' wall-friction-factor formula.

  • PDF

Rotordynamic and Leakage Analysis for Eccentric Annular Seal (편심된 펌프 실의 누설 및 회전체동역학적 해석)

  • Ha, Tae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.2 s.11
    • /
    • pp.15-21
    • /
    • 2001
  • Basic equations and their solution procedure we derived for the analysis of an annular pump seal in which the rotor has a large static displacement from the centered position. The Bulk-flow is assumed for a control volume set in the seal clearance and the flow is assumed to be completely turbulent in axial and circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about an eccentric position. Flow variables are expanded by using Fourier series for the solution procedure. Integration of the resultant first-order pressure distribution along and around the seal defines the 12 elements of rotordynamic coefficients of the eccentric annular pump seal. The results of leakage and rotordynamic coefficients aye presented and compared with the Marquette's experimental results and the San Andres' theoretical analysis.

  • PDF

Leakage and Rotordynamic Analysis for Staggered-Labyrinth Gas Seal (엇갈린 래버린스 실의 누설량 및 동특성 해석)

  • Ha, Tae-Woong
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.24-33
    • /
    • 2002
  • The basic equations are derived for the analysis of a staggered labyrinth gas seal which are generally used in high performance compressors and steam turbines. The Bulk-flow is assumed for a single cavity control volume and the flow is assumed to be completely turbulent in circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the single cavity control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the staggered labyrinth gas seal. Theoretical results of leakage and rotordynamic characteristics for the staggered labyrinth gas seal are compared with those of the plain seal and see-through labyrinth seal.

Rotordynamic Analysis for Labyrinth Seals Used in Compressors (압축기용 라비린스 실의 동특성 해석)

  • 하태웅;이안성
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.138-144
    • /
    • 1997
  • The analysis of lateral hydrodynamic forces from the compressor labyrinth seals is presented. The basic equations are derived using a two-control-volume model for compressible flow. Blasius' wall friction-factor formula and jet flow theory are used for the calculation of the wall shear stresses and the recirculation velocity in the cavity. Linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the labyrinth seal. The rotordynamic analysis for the balance drum labyrinth seal of an ethylene refrigeration compressor is carried out. The results of rotordynamic characteristic of the labyrinth seal and comparisons with other types of seal, honeycomb seal and smooth seal, are presented.

  • PDF

Stochastic buckling quantification of porous functionally graded cylindrical shells

  • Trinh, Minh-Chien;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.651-676
    • /
    • 2022
  • Most of the experimental, theoretical, and numerical studies on the stability of functionally graded composites are deterministic, while there are full of complex interactions of variables with an inherently probabilistic nature, this paper presents a non-intrusive framework to investigate the stochastic nonlinear buckling behaviors of porous functionally graded cylindrical shells exposed to inevitable source-uncertainties. Euler-Lagrange equations are theoretically derived based on the three variable refined shear deformation theory. Closed-form solutions for the shell buckling loads are achieved by solving the deterministic eigenvalue problems. The analytical results are verified with numerical results obtained from finite element analyses that are conducted in the commercial software ABAQUS. The non-intrusive framework is completed by integrating the Monte Carlo simulation with the verified closed-form solutions. The convergence studies are performed to determine the effective pseudorandom draws of the simulation. The accuracy and efficiency of the framework are verified with statistical results that are obtained from the first and second-order perturbation techniques. Eleven cases of individual and compound uncertainties are investigated. Sensitivity analyses are conducted to figure out the five cases that have profound perturbative effects on the shell buckling loads. Complete probability distributions of the first three critical buckling loads are completely presented for each profound uncertainty case. The effects of the shell thickness, volume fraction index, and stochasticity degree on the shell buckling load under compound uncertainties are studied. There is a high probability that the shell has non-unique buckling modes in stochastic environments, which should be known for reliable analysis and design of engineering structures.

Calculation of the Cubic Crystal Field Splitting 10 Dq in KNiF$_3$. An Integral Hellmann-Feynman Approach (Integral Hellmann-Feynman Approach에 의한 KNiF$_3$의 Cubic Crystal Field Splitting 10 Dq의 계산)

  • Hojing Kim;Hie-Joon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.6
    • /
    • pp.395-405
    • /
    • 1973
  • By use of an Integral Hellmann-Feynman formula, the cubic crystal field splitting 1O Dq in $KNiF_3$ is calculated from first principles. Numerical values of covalency parameters and necessary integrals are quoted from Sugano and Shulman. The result, 7100$cm^{-1}$, is in excellent agreement with the observed value, 7250$cm^{-1}$. It is found that higher order perturbation energy correction is of the same order of magnitude as 10 Dq itself and is, therefore, essential tin calculating 10 Dq from first principles. It is also found that the point charge potential is the dominant part of the crystal field potential.

  • PDF

Linear and nonlinear vibrations of inhomogeneous Euler-Bernoulli beam

  • Bakalah, Ebrahim S.;Zaman, F.D.;Saleh, Khairul
    • Coupled systems mechanics
    • /
    • v.7 no.5
    • /
    • pp.635-647
    • /
    • 2018
  • Dynamic problems arising from the Euler-Bernoulli beam model with inhomogeneous elastic properties are considered. The method of Green's function and perturbation theory are employed to find the deflection in the beam correct to the first-order. Eigenvalue problems appearing from transverse vibrations of inhomogeneous beams in linear and nonlinear cases are also discussed.