• 제목/요약/키워드: first response material

검색결과 331건 처리시간 0.029초

베이지안 접근법을 이용한 입력변수 및 근사모델 불확실성 하에 서의 신뢰성 분석 (Reliability Analysis Under Input Variable and Metamodel Uncertainty Using Simulation Method Based on Bayesian Approach)

  • 안다운;원준호;김은정;최주호
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1163-1170
    • /
    • 2009
  • Reliability analysis is of great importance in the advanced product design, which is to evaluate reliability due to the associated uncertainties. There are three types of uncertainties: the first is the aleatory uncertainty which is related with inherent physical randomness that is completely described by a suitable probability model. The second is the epistemic uncertainty, which results from the lack of knowledge due to the insufficient data. These two uncertainties are encountered in the input variables such as dimensional tolerances, material properties and loading conditions. The third is the metamodel uncertainty which arises from the approximation of the response function. In this study, an integrated method for the reliability analysis is proposed that can address all these uncertainties in a single Bayesian framework. Markov Chain Monte Carlo (MCMC) method is employed to facilitate the simulation of the posterior distribution. Mathematical and engineering examples are used to demonstrate the proposed method.

Evaluation of the seismic performance of off-centre bracing system with ductile element in steel frames

  • Bazzaz, Mohammad;Kheyroddin, Ali;Kafi, Mohammad Ali;Andalib, Zahra
    • Steel and Composite Structures
    • /
    • 제12권5호
    • /
    • pp.445-464
    • /
    • 2012
  • In order to evaluate the dynamic behavior of passive energy dissipation system, two steps need to be considered for prediction of structural response in the presence of ductile element in an off-centre bracing system. The first is a detailed analysis of the proposed ductile element and the second is the effect of this ductile element on an off-centre bracing system. The use of ductile bracing system is expanding in steel structures in order to increase the force reduction factor. Therefore, regarding the nonlinear behavior of steel material used in an off-centre bracing systems and using ductile element in OBS bracing systems, the seismic evaluation of the mentioned systems seems to be necessary. This paper aims to study linear and nonlinear behavior of steel frames with off-centre bracing system and ductile element, in order to get the best position of these bracing elements. To achieve this purpose, the modeling has been done with ANSYS software. The optimum eccentricity has been obtained by modeling three steel frames with different eccentricities and evaluating the results of them. The analytical results showed that the model OBS-C with 0.3 eccentricities has higher performance among the models.

Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment

  • Ebrahimi, Farzad;Daman, Mohsen
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.121-133
    • /
    • 2017
  • This paper proposes an analytical solution method for free vibration of curved functionally graded (FG) nonlocal beam supposed to different thermal loadings, by considering porosity distribution via nonlocal elasticity theory for the first time. Material properties of curved FG beam are assumed to be temperature-dependent. Thermo-mechanical properties of porous FG curved beam are supposed to vary through the thickness direction of beam and are assumed to be temperature-dependent. Since variation of pores along the thickness direction influences the mechanical and physical properties, porosity play a key role in the mechanical response of curved FG structures. The rule of power-law is modified to consider influence of porosity according to even distribution. The governing equations of curved FG porous nanobeam under temperature field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is used to achieve the natural frequencies of porous FG curved nanobeam supposed to thermal loadings with simply supported boundary condition. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality, porosity volume fractions, type of temperature rising, gradient index, opening angle and aspect ratio of curved FG porous nanobeam on the natural frequency are successfully discussed. It is concluded that these parameters play key roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

Se, As 및 Te를 이용한 고감도 다층 광도전막의 제작 및 그 응용 (Fabrication of High Sensitive Photoconductive Multilayer Using Se,As and Te and its Application)

  • 박기철;이건일;김기완
    • 대한전자공학회논문지
    • /
    • 제25권4호
    • /
    • pp.422-429
    • /
    • 1988
  • The photoconductive multilayer of Se-As(hole blocking layer)/Se-As-Te (photoconductive layer) /Se-As (layer for supporiting hole transport)/Se-As(layer or controlling total capacitance)/Sb2S3(electron blocking layer) was fabricated and its electrical and optical properties were investigated. The photoconductive multilayer is made of evaporated a-Se as the base material, doped with As and Te to prevent the crystallization of a-Se and to enhance red sensitivity, respectively. The multilayer with good image reproducibility has the following deposition condition. The first layer has the thickness of 250\ulcornerat the deposition rate of 250\ulcornersec. The second layer has the thickness of 800\ulcornerat the deposition rate of 250\ulcornersec. The third layer has the thickness of 125\ulcornerat the deposition rate of 250\ulcornersec. The fourth layer has the thickness of 1700\ulcornerunder the Ar gas ambient of 50x10**-3torr. The image pick-up tube, employing this multilayer demonstrates the following characteristics. The photosensitivity is 0.8, the resolution limit is above 300TV line, and the decay lag is about 7%. And spectral response convers the whole visible range. Therfore the application to color TV camera is expected.

  • PDF

자기감응 액추에이터를 이용한 능동소음제어 (Active Noise Control Using Sensory Actuator)

  • 고병식
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1573-1581
    • /
    • 1996
  • This paper present as experimental demonstratio of DSP and a sensory actuator that is used to actively control sound transmission/radiation through a vibrating plate. A plane acoustic wave incident on a clamped, thin circular plate was used as a noise source, and a sensory actuator bounded to the plate was used to control and sense vibration of the plate. The sound transmission reduction problem was tranformed as a structural vibration control problem that actively control the structural vibration modes coupled to acoustic modes. The results show that the first structural vibration mode is controlled with a reduction of 78 percent in the displacement and velocity of the plate. This corresponds to a 13dB reduction in the acoustic response. These experimental results indicate that a sensory actuator bounded to the plate can be employed to attenuate the sound transmitted to radiated from the plate.

적응 Feedforward를 이용한 자기베어링 고속 주축계의 전기적 런아웃 제어 (Runout Control of a Magnetically Suspended High Speed Spindle Using Adaptive Feedforward Method)

  • 노승국;경진호;박종권
    • 한국정밀공학회지
    • /
    • 제19권12호
    • /
    • pp.57-63
    • /
    • 2002
  • In this paper, the feedforward control with least mean square (LMS) adaptive algorithm is proposed and examined to reduce rotating error by runout of an active magnetic bearing system. Using eddy-current type gap sensor fur control, the electrical runout caused by non-uniform material properties of sensor target produces rotational error amplified in feedback control loop, so this runout should be eliminated to increase rotating accuracy. The adaptive feedforward controller is designed and examined its tracking and stability performances numerically with established frequency response function. The tested grinding spindle system is manufactured with a 5.5 ㎾ internal motor and 5-axis active magnetic bearing system including 5 eddy current gap sensors which have approximately 15 ~ 30 ${\mu}{\textrm}{m}$ of electrical runout. According to the experimental analysis, the error signal in radial bearings is reduced to less than 5 ${\mu}{\textrm}{m}$ when it is rotating up to 50,000 rpm due to applying the feedforward control for first order harmonic frequency, and vibration of the spindle base is also reduced about same frequency.

Optimal design of floating substructures for spar-type wind turbine systems

  • Choi, Ejae;Han, Changwan;Kim, Hanjong;Park, Seonghun
    • Wind and Structures
    • /
    • 제18권3호
    • /
    • pp.253-265
    • /
    • 2014
  • The platform and floating structure of spar type offshore wind turbine systems should be designed in order for the 6-DOF motions to be minimized, considering diverse loading environments such as the ocean wave, wind, and current conditions. The objective of this study is to optimally design the platform and substructure of a 3MW spar type wind turbine system with the maximum postural stability in 6-DOF motions as well as the minimum material cost. Therefore, design variables of the platform and substructure were first determined and then optimized by a hydrodynamic analysis. For the hydrodynamic analysis, the body weight of the system was considered, and the ocean wave conditions were quantified to the wave forces using the Morison's equation. Moreover, the minimal number of computation analysis models was generated by the Design of Experiments (DOE), and the design variables of the platform and substructure were finally optimized by using a genetic algorithm with a neural network approximation.

Identification of flutter derivatives from full-scale ambient vibration measurements of the Clifton Suspension Bridge

  • Nikitas, Nikolaos;Macdonald, John H.G.;Jakobsen, Jasna B.
    • Wind and Structures
    • /
    • 제14권3호
    • /
    • pp.221-238
    • /
    • 2011
  • The estimated response of large-scale engineering structures to severe wind loads is prone to modelling uncertainties that can only ultimately be assessed by full-scale testing. To this end ambient vibration data from full-scale monitoring of the historic Clifton Suspension Bridge has been analysed using a combination of a frequency domain system identification method and a more elaborate stochastic identification technique. There is evidence of incipient coupling action between the first vertical and torsional modes in strong winds, providing unique full-scale data and making this an interesting case study. Flutter derivative estimation, which has rarely previously been attempted on full-scale data, was performed to provide deeper insight into the bridge aerodynamic behaviour, identifying trends towards flutter at higher wind speeds. It is shown that, as for other early suspension bridges with bluff cross-sections, single-degree-of-freedom flutter could potentially occur at wind speeds somewhat below requirements for modern designs. The analysis also demonstrates the viability of system identification techniques for extracting valuable results from full-scale data.

Experimental studies into a new type of hybrid outrigger system with metal dampers

  • Wang, A.J.
    • Structural Engineering and Mechanics
    • /
    • 제64권2호
    • /
    • pp.183-194
    • /
    • 2017
  • This paper presents the experimental investigation into a new type of steel-concrete hybrid outrigger system developed for the high-rise building structure. The steel truss is embedded into the reinforced concrete outrigger wall, and both the steel truss and concrete outrigger wall work compositely to enhance the overall structural performance of the tower structures under extreme loads. Meanwhile, metal dampers of low-yield steel material were also adopted as a 'fuse' device between the hybrid outrigger and the column. The damper is engineered to be 'scarified' and yielded first under moderate to severe earthquakes in order to protect the structural integrity of important structural components of the hybrid outrigger system. As such, not brittle failure is likely to happen due to the severe cracking in the concrete outrigger wall. A comprehensive experimental research program was conducted into the structural performance of this new type of hybrid outrigger system. Studies on both the key component and overall system tests were conducted, which reveal the detailed structural response under various levels of applied static and cyclic loads. It was demonstrated that both the steel bracing and concrete outrigger wall are able to work compositely with the low-yield steel damper and exhibits both good load carrying capacities and energy dispersing performance through the test program. It has the potential to be applied and enhance the overall structural performance of the high-rise structures over 300 m under extreme levels of loads.

Runout Control of a Magnetically Suspended High Speed Spindle Using Adaptive Feedforward Method

  • Ro Seung-Kook;Kyung Jin-Ho;Park Jong-Kwon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권2호
    • /
    • pp.19-25
    • /
    • 2005
  • In this paper, the feedforward control with least mean square (LMS) adaptive algorithm is proposed and examined to reduce rotating error by runout of an active magnetic bearing system. Using eddy-current type gap sensors for control, the electrical runout caused by non-uniform material properties of sensor target produces rotational error amplified in feedback control loop, so this runout should be eliminated to increase rotating accuracy. The adaptive feedforward controller is designed and examined its tracking performances and stability numerically with established frequency response function. The designed feedforward controller was applied to a grinding spindle system which is manufactured with a 5.5 kW internal motor and 5-axis active magnetic bearing system including 5 eddy current gap sensors which have approximately 15∼30㎛ of electrical runout. According to the experimental results, the error signal in radial bearings is reduced to less than 5 ,Urn when it is rotating up to 50,000 rpm due to applying the feedforward control for first order harmonic frequency, and corresponding vibration of the spindle is also removed.