• Title/Summary/Keyword: first order plate theory

Search Result 242, Processing Time 0.019 seconds

Dynamic behavior of FGM beam using a new first shear deformation theory

  • Hadji, Lazreg;Daouadji, T. Hassaine;Bedia, E.A.
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.451-461
    • /
    • 2016
  • A new first-order shear deformation theory is developed for dynamic behavior of functionally graded beams. The equations governing the axial and transverse deformations of functionally graded plates are derived based on the present first-order shear deformation plate theory and the physical neutral surface concept. There is no stretching-bending coupling effect in the neutral surface based formulation, and consequently, the governing equations and boundary conditions of functionally graded beams based on neutral surface have the simple forms as those of isotropic plates. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Vibration and stability analyses of thick anisotropic composite plates by finite strip method

  • Akhras, G.;Cheung, M.S.;Li, W.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.1
    • /
    • pp.49-60
    • /
    • 1995
  • In the present study, a finite strip method for the vibration and stability analyses of anisotropic laminated composite plates is developed according to the higher-order shear deformation theory. This theory accounts for the parabolic distribution of the transverse shear strains through the thickness of the plate and for zero transverse shear stresses on the plate surfaces. In comparison with the finite strip method based on the first-order shear deformation theory, the present method gives improved results for very thick plates while using approximately the same number of degrees of freedom. It also eliminates the need for shear correction factors in calculating the transverse shear stiffness. A number of numerical examples are presented to show the effect of aspect ratio, length-to-thickness ratio, number of plies, fibre orientation and stacking sequence on the natural frequencies and critical buckling loads of simply supported rectangular cross-ply and arbitrary angle-ply composite laminates.

A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates

  • Hamidi, Ahmed;Houari, Mohammed Sid Ahmed;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.235-253
    • /
    • 2015
  • In this research, a simple but accurate sinusoidal plate theory for the thermomechanical bending analysis of functionally graded sandwich plates is presented. The main advantage of this approach is that, in addition to incorporating the thickness stretching effect, it deals with only 5 unknowns as the first order shear deformation theory (FSDT), instead of 6 as in the well-known conventional sinusoidal plate theory (SPT). The material properties of the sandwich plate faces are assumed to vary according to a power law distribution in terms of the volume fractions of the constituents. The core layer is made of an isotropic ceramic material. Comparison studies are performed to check the validity of the present results from which it can be concluded that the proposed theory is accurate and efficient in predicting the thermomechanical behavior of functionally graded sandwich plates. The effect of side-to-thickness ratio, aspect ratio, the volume fraction exponent, and the loading conditions on the thermomechanical response of functionally graded sandwich plates is also investigated and discussed.

Free vibration and buckling analysis of orthotropic plates using a new two variable refined plate theory

  • Issad, Mohammed Naim;Fekrar, Abdelkader;Bakora, Ahmed;Bessaim, Aicha;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.711-719
    • /
    • 2018
  • The present work presents a free vibration and buckling analysis of orthotropic plates by proposing a novel two variable refined plate theory. Contrary to the conventional higher order shear deformation theories (HSDT) and the first shear deformation theory (FSDT), the proposed theory utilizes a novel displacement field which incorporates undetermined integral terms and involves only two unknowns. The governing equations are obtained from the dynamic version of principle of virtual works. The analytical solution of a simply supported orthotropic plate has been determined by using the Navier method. Numerical investigations are performed by employing the proposed model and the obtained results are compared with the existing HSDTs.

An efficient partial mixed finite element model for static and free vibration analyses of FGM plates rested on two-parameter elastic foundations

  • Lezgy-Nazargah, M.;Meshkani, Z.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.665-676
    • /
    • 2018
  • In this study, a four-node quadrilateral partial mixed plate element with low degrees of freedom (dofs) is developed for static and free vibration analysis of functionally graded material (FGM) plates rested on Winkler-Pasternak elastic foundations. The formulation of the presented finite element model is based on a parametrized mixed variational principle which is developed recently by the first author. The presented finite element model considers the effects of shear deformations and normal flexibility of the FGM plates without using any shear correction factor. It also fulfills the boundary conditions of the transverse shear and normal stresses on the top and bottom surfaces of the plate. Beside these capabilities, the number of unknown field variables of the plate is only six. The presented partial mixed finite element model has been validated through comparison with the results of the three-dimensional (3D) theory of elasticity and the results obtained from the classical and high-order plate theories available in the open literature.

A high-order gradient model for wave propagation analysis of porous FG nanoplates

  • Shahsavari, Davood;Karami, Behrouz;Li, Li
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.53-66
    • /
    • 2018
  • A high-order nonlocal strain gradient model is developed for wave propagation analysis of porous FG nanoplates resting on a gradient hybrid foundation in thermal environment, for the first time. Material properties are assumed to be temperature-dependent and graded in the nanoplate thickness direction. To consider the thermal effects, uniform, linear, nonlinear, exponential, and sinusoidal temperature distributions are considered for temperature-dependent FG material properties. On the basis of the refined-higher order shear deformation plate theory (R-HSDT) in conjunction with the bi-Helmholtz nonlocal strain gradient theory (B-H NSGT), Hamilton's principle is used to derive the equations of wave motion. Then the dispersion relation between frequency and wave number is solved analytically. The influences of various parameters (such as temperature rise, volume fraction index, porosity volume fraction, lower and higher order nonlocal parameters, material characteristic parameter, foundations components, and wave number) on the wave propagation behaviors of porous FG nanoplates are investigated in detail.

A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation

  • Tounsi, Abdelouahed;Al-Dulaijan, S.U.;Al-Osta, Mohammed A.;Chikh, Abdelbaki;Al-Zahrani, M.M.;Sharif, Alfarabi;Tounsi, Abdeldjebbar
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.511-524
    • /
    • 2020
  • In this research, a simple four-variable trigonometric integral shear deformation model is proposed for the static behavior of advanced functionally graded (AFG) ceramic-metal plates supported by a two-parameter elastic foundation and subjected to a nonlinear hygro-thermo-mechanical load. The elastic properties, including both the thermal expansion and moisture coefficients of the plate, are also supposed to be varied within thickness direction by following a power law distribution in terms of volume fractions of the components of the material. The interest of the current theory is seen in its kinematics that use only four independent unknowns, while first-order plate theory and other higher-order plate theories require at least five unknowns. The "in-plane displacement field" of the proposed theory utilizes cosine functions in terms of thickness coordinates to calculate out-of-plane shear deformations. The vertical displacement includes flexural and shear components. The elastic foundation is introduced in mathematical modeling as a two-parameter Winkler-Pasternak foundation. The virtual displacement principle is applied to obtain the basic equations and a Navier solution technique is used to determine an analytical solution. The numerical results predicted by the proposed formulation are compared with results already published in the literature to demonstrate the accuracy and efficiency of the proposed theory. The influences of "moisture concentration", temperature, stiffness of foundation, shear deformation, geometric ratios and volume fraction variation on the mechanical behavior of AFG plates are examined and discussed in detail.

Bending analysis of smart functionally graded plate using the state-space approach

  • Niloufar Salmanpour;Jafar Rouzegar;Farhad Abad;Saeid Lotfian
    • Steel and Composite Structures
    • /
    • v.52 no.5
    • /
    • pp.525-541
    • /
    • 2024
  • This study uses the state-space approach to study the bending behavior of Levy-type functionally graded (FG) plates sandwiched between two piezoelectric layers. The coupled governing equations are obtained using Hamilton's principle and Maxwell's equation based on the efficient four-variable refined plate theory. The partial differential equations (PDEs) are converted using Levy's solution technique to ordinary differential equations (ODEs). In the context of the state-space method, the higher-order ODEs are simplified to a system of first-order equations and then solved. The results are compared with those reported in available references and those obtained from Abaqus FE simulations, and good agreements between results confirm the accuracy and efficiency of the approach. Also, the effect of different parameters such as power-law index, aspect ratio, type of boundary conditions, thickness-to-side ratio, and piezoelectric thickness are studied.

Wave propagation investigation of a porous sandwich FG plate under hygrothermal environments via a new first-order shear deformation theory

  • Al-Osta, Mohammed A.
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.117-127
    • /
    • 2022
  • This study investigates the wave propagation in porous functionally graded (FG) sandwich plates subjected to hygrothermal environments. A new simple three-unknown first-ordershear deformation theory (FSDT) incorporating an integral term is utilized in this paper. Only three unknowns are used to formulate the governing differential equation by applying the Hamilton principle. The FG layer of the sandwich plate is modeled using the power-law function with evenly distributed porosities to represent the defects of the manufacturing process. The plate is subjected to nonlinear hygrothermal changes across the thickness. The effects of the power-law exponent, core to thickness ratios, porosity volume, and the relations between volume fraction and wave properties of porous FG plate under the hygrothermal environment are investigated. The results showed that the waves' phase velocities increase linearly with the waves number in the FGM plate. The porosity of the FG materials plate has a noticeable impact on the phase velocity when considering the high ratios of the core layer. It has a negligible effect on small core layers. Finally, it is observed that changing temperatures and moistures do not influence the relationship between the power law and the phase velocity.

Isogeometric Collocation Method to solve the strong form equation of UI-RM Plate Theory

  • Katili, Irwan;Aristio, Ricky;Setyanto, Samuel Budhi
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.435-449
    • /
    • 2020
  • This work presents the formulation of the isogeometric collocation method to solve the strong form equation of a unified and integrated approach of Reissner Mindlin plate theory (UI-RM). In this plate theory model, the total displacement is expressed in terms of bending and shear displacements. Rotations, curvatures, and shear strains are represented as the first, the second, and the third derivatives of the bending displacement, respectively. The proposed formulation is free from shear locking in the Kirchhoff limit and is equally applicable to thin and thick plates. The displacement field is approximated using the B-splines functions, and the strong form equation of the fourth-order is solved using the collocation approach. The convergence properties and accuracy are demonstrated with square plate problems of thin and thick plates with different boundary conditions. Two approaches are used for convergence tests, e.g., increasing the polynomial degree (NELT = 1×1 with p = 4, 5, 6, 7) and increasing the number of element (NELT = 1×1, 2×2, 3×3, 4×4 with p = 4) with the number of control variable (NCV) is used as a comparable equivalent variable. Compared with DKMQ element of a 64×64 mesh as the reference for all L/h, the problem analysis with isogeometric collocation on UI-RM plate theory exhibits satisfying results.