• Title/Summary/Keyword: first order kinetic model

Search Result 225, Processing Time 0.031 seconds

Equilibrium, Kinetic and Thermodynamic Parameter Studies on Adsorption of Acid Yellow 14 Using Activated Carbon (활성탄을 이용한 Acid Yellow 14 흡착에 대한 평형, 동역학 및 열역학 파라미터의 연구)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.255-261
    • /
    • 2016
  • Adsorption experiments of Acid Yellow 14 dye using activated carbon were carried out as function of adsorbent dose, pH, initial concentration, contact time and temperature. The equilibrium adsorption data were analyzed by Langmuir, Freundlich and Temkin isotherm model. The experimental data were best represented by Freundlich isotherm model. Base on the estimated Freundlich constant (1/n=0.129~0.212) and Langmuir separation factor ($R_L=0.202{\sim}0.243$), this process could be employed as effective treatment method. The heat of adsorption of Temkin isotherm model was 5.101~9.164 J/mol indicated that the adsorption process followed a physical adsorption. Adsorption kinetics experimental data were modeled using the pseudo-first-order and pseudo-second-order kinetic equation. It was shown that pseudo-second-order kinetic equation could best describe the adsorption kinetics. Base on the negative Gibbs free energy (-4.81~-10.33 kJ/mol) and positive enthalpy (+78.59 kJ/mol) indicate that the adsorption is spontaneous and endothermic process.

Sorption and Desorption Kinetics of Naphthalene and Phenanthrene on Black Carbon in Sediment (퇴적물내 Black Carbon에 대한 Naphthalene과 Phenanthrene의 수착 및 탈착동력학)

  • Oh, Sang-Hwa;Wu, Qi;Song, Dong-Ik;Shin, Won-Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.79-94
    • /
    • 2011
  • Black carbon (BC), a kind of high surface area carbonaceous material (HSACM), was isolated from Andong lake sediment. Sorption and desorption kinetics of naphthalene (Naph) and phenanthrene (Phen) in organic carbon (OC) and BC in the Andong lake sediment were investigated. Several kinetic models such as one-site mass transfer model (OSMTM), two-compartment first-order kinetic model (TCFOKM), and a newly proposed modified two-compartment first-order kinetic model (MTCFOKM) were used to describe the sorption and desorption kinetics. The MTCFOKM was the best fitting model. The MTCFOKM for sorption kinetics showed that i) the sorbed amounts of PAHs onto BC were higher than those onto OC, consistent with BET surface area; ii) the equilibration time for sorption onto BC was longer than those onto OC due to smaller size of micropore ($11.67{\AA}$) of BC than OC ($38.18{\AA}$); iii) initial sorption velocity of BC was higher than OC; and iv) the slow sorption velocity in BC caused the later equilibrium time than OC even though the fast sorption velocity was early completed in both BC and OC. The MTCFOKM also described the desorption of PAHs from the OC and BC well. After desorption, the remaining fractions of PAHs in BC were higher than those in OC due to stronger PAHs-BC binding. The remaining fractions increased with aging for both BC and OC.

Kinetic Analysis and Mathematical Modeling of Cr(VI) Removal in a Differential Reactor Packed with Ecklonia Biomass

  • Park, Dong-Hee;Yun, Yeoung-Sang;Lim, Seong-Rin;Park, Jong-Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1720-1727
    • /
    • 2006
  • To set up a kinetic model that can provide a theoretical basis for developing a new mathematical model of the Cr(VI) biosorption column using brown seaweed Ecklonia biomass, a differential reactor system was used in this study. Based on the fact that the removal process followed a redox reaction between Cr(VI) and the biomass, with no dispersion effect in the differential reactor, a new mathematical model was proposed to describe the removal of Cr(VI) from a liquid stream passing through the differential reactor. The reduction model of Cr(VI) by the differential reactor was zero order with respect to influent Cr(IlI) concentration, and first order with respect to both the biomass and influent Cr(VI) concentrations. The developed model described well the dynamics of Cr(VI) in the effluent. In conclusion, the developed model may be used for the design and performance prediction of the biosorption column process for Cr(VI) detoxification.

Characteristics of Cu and Cs Ions adsorbed on an immobilized Adsorbent including Zeolite Synthesized from Jeju Scoria (제주 스코리아로부터 합성한 제올라이트계 고정화 흡착제에 의한 Cu와 Cs 이온의 흡착 특성)

  • Lee, Chang-Han;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.28 no.1
    • /
    • pp.55-64
    • /
    • 2019
  • The adsorption properties of $Cs^+$ and $Cu^{2+}$ ions were evaluated by using a polysulfone scoria zeolite (PSf-SZ) composite with synthetic zeolite synthesized from Jeju volcanic rocks (scoria). In order to investigate the adsorption properties, various parameters, such as pH, contact time, reaction rate, concentration, and temperature in aqueous solutions, were evaluated by tests carried out in batch experiments. The adsorption capacities of $Cs^+$ and $Cu^{2+}$ ions increased between pH 2 but achieved equilibrium at pH 4 and above. The adsorption rate increased rapidly up to the initial 24 h, after which it plateaued ; the adsorption rate then sustained at equilibrium from 48 h. The adsorption kinetics of $Cs^+$ and $Cu^{2+}$ ions were described better by the pseudo-second-order kinetic model than the pseudo-first-order kinetic model. The Langmuir model fitted the adsorption isotherm data better than the Freundlich model. The maximum adsorption capacities of $Cs^+$ and $Cu^{2+}$ ions obtained from the Langmuir model were 53.8 mg/g and 84.7 mg/g, respectively. The calculated thermodynamic parameters showed that the adsorption of $Cs^+$ and $Cu^{2+}$ ions on PSf-SZ was feasible, spontaneous and endothermic reaction.

Hevea brasiliensis - A Biosorbent for the Adsorption of Cu(II) from Aqueous Solutions

  • Sivarajasekar, N.
    • Carbon letters
    • /
    • v.8 no.3
    • /
    • pp.199-206
    • /
    • 2007
  • The activated carbon produced from rubber wood sawdust by chemical activation using phosphoric acid have been utilized as an adsorbent for the removal of Cu(II) from aqueous solution in the concentration range 5-40 mg/l. Adsorption experiments were carried out in a batch process and various experimental parameters such as effect of contact time, initial copper ion concentration, carbon dosage, and pH on percentage removal have been studied. Adsorption results obtained for activated carbon from rubber wood sawdust were compared with the results of commercial activated carbon (CAC). The adsorption on activated carbon samples increased with contact time and attained maximum value at 3 h for CAC and 4 h for PAC. The adsorption results show that the copper uptake increased with increasing pH, the optimum efficiency being attained at pH 6. The precipitation of copper hydroxide occurred when pH of the adsorbate solution was greater than 6. The equilibrium data were fitted using Langmuir and Freundlich adsorption isotherm equation. The kinetics of sorption of the copper ion has been analyzed by two kinetic models, namely, the pseudo first order and pseudo second order kinetic model. The adsorption constants and rate constants for the models have been determined. The process follows pseudo second order kinetics and the results indicated that the Langmuir model gave a better fit to the experimental data than the Freundlich model. It was concluded that activated carbon produced using phosphoric acid has higher adsorption capacity when compared to CAC.

Numerical Analyses on Wall-Attaching Offset Jet with Algebraic Reynolds Stress Model (대수 레이놀즈 응력모델에 의한 단이 진 벽면분류에 대한 수치해석)

  • Seo, Ho-Taek;Lee, Deuck-Soo;Boo, Jung-Sook
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.579-584
    • /
    • 2000
  • Algebraic Reynolds Stress (ARS) model is applied in order to analyze the turbulent flow of wall-attaching offset jet and to evaluate the model's predictability. The applied numerical schemes are upwind scheme and skew-upwind scheme. The numerical results show good prediction in first order calculations (i.e., reattachment length, mean velocity, pressure), while they show slight deviations in second order (i.e., kinetic energy and turbulence intensity). By comparison with the previous results using $k-{\varepsilon}$ model, ARS model predicts better than the standard $k-{\varepsilon}$ model, however, predicts slightly worse than the $k-{\varepsilon}$ model including the streamline curvature modification. Additionally this study can reconfirm that skew-upwind scheme has approximately 25% improved predictability than upwind scheme.

  • PDF

Numerical Analyses on Wall-Attaching Offset Jet with Algebraic Reynolds Stress Model (대수 레이놀즈 응력모델에 의한 단이 진 벽면분류에 대한 수치해석)

  • Seo, Ho-Taek;Bu, Jeong-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1615-1624
    • /
    • 2000
  • Algebraic Reynolds Stree (ARS) model is applied in order to analyze the turbulent flow of wall-attaching offset jet and to evaluate the predictability of model. The applied numerical schemes are the upwind scheme and the skew-upwind scheme. The numerical results show a good prediction in the first order calculations(i.e., reattachment length, mean velocity, pressure), however, slight deviations in the second order(i.e., kinetic energy and turbulence intensity). Comparing with the previous results using the k-$\varepsilon$ model, the ARS model predicts better than the standard k-$\varepsilon$ model, however, slightly worse than the k-$\varepsilon$ model including the streamline curvature modification. Additionallay this study can reconfirm that the skew-upwind scheme has approximately 25% improved predictability than the upwind scheme.

Sorption Characteristics of Arsenic on Furnace Slag by Adsorption Isotherm and Kinetic Sorption Experiments (등온 및 동적 흡착 실험을 통한 제강 슬래그의 비소 흡착 특성)

  • Oh, Cham-Teut;Rhee, Sung-Su;Igarashi, Toshifumi;Kon, Ho-Jin;Lee, Won-Taek;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.9
    • /
    • pp.37-45
    • /
    • 2010
  • Sorption characteristics of arsenic on furnace slag were investigated to remove arsenic from groundwater using furnace slag, which is industrial waste generated from steel company. Adsorption isotherm experiments and kinetic sorption experiments were performed and the chemical characteristics of supernatants from these experiments were analyzed. Results showed that all supernatants were alkaline (above pH 9) and the highest ion concentration in the solution was found with calcium (30~50 mg/L). Results of adsorption isotherms were more adequately described by the Freundlich model than Langmuir model. From adsorption isotherms experiments, it was noted that the adsorption amount of As(V) was 87% higher than that of As(III). Results of kinetic sorption experiments were more properly fitted by pseudo second order (PSO) model than pseudo first order model. Equilibrium adsorption amount ($q_e$) and relaxation time ($t_r$) calculated from PSO model increased with initial concentration of arsenic. Equilibrium adsorption amount of As(V) was higher than that of As(III) and relaxation time of As(V) was shorter than that of As(III). Adsorption isotherm results could be predicted by kinetic adsorption results, since equilibrium adsorption amount calculated through PSO model generally agreed with equilibrium adsorption amount measured from adsorption isotherm.

Comparative Study on Adsorptive Characteristics of Diazinon in Water by Various Adsorbents

  • Ryoo, Keon Sang;Jung, Sun Young;Sim, Hun;Choi, Jong-Ha
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2753-2759
    • /
    • 2013
  • The aim of the present study is to explore the possibility of utilizing fly ash and loess, as alternative to activated carbon, for the adsorption of diazinon in water. Batch adsorption experiment was performed to evaluate the influences of various factors like initial concentration, contact time and temperature on the adsorption of diazinon. The adsorption data shows that fly ash is not effective for the adsorption of diazinon. The equilibrium data for both activated carbon and loess were fitted well to the Freundlich isotherm model. The pseudo-second-order kinetic model appeared to be the better-fitting model because it has higher $R^2$ compared to the pseudo-first-order kinetic model. The thermodynamic parameters such as free energy (${\Delta}G$), the enthalpy (${\Delta}H$) and the entropy (${\Delta}S$) were calculated. Contrary to loess, the ${\Delta}G$ values of activated carbon were negative at the studied temperatures. It indicates that the adsorption of diazinon by activated carbon is a favorable and spontaneous process. The positive ${\Delta}H$ values of activated carbon and loess suggest that the diazinon adsorption process is endothermic in nature. In addition, the positive ${\Delta}S$ values show that increased randomness occurs at the solid/solution surface during the adsorption of diazinon.

Coconut husk as a biosorbent for methylene blue removal and its kinetics study

  • Dave, Shailesh R.;Dave, Vaishali A.;Tipre, Devayani R.
    • Advances in environmental research
    • /
    • v.1 no.3
    • /
    • pp.223-236
    • /
    • 2012
  • Biosorption of methylene blue (MB) from aqueous solution was studied with respect to the point of zero charge of coconut husk, dye concentration, particle size, pH, temperature, as well as adsorbent and NaCl concentration using coconut husk biomass. Amongst Langmuir and Freundlich adsorption isotherms studied, Langmuir adsorption isotherm showed better agreement. Pseudo second order kinetics model was found to be more suitable for data presentation as compared to pseudo first order kinetics model. Also, involvement of diffusion process was studied using intraparticle diffusion, external mass transfer and Boyd kinetic model. Involvement of intraparticle diffusion model was found to be more relevant (prominent) as compared to external mass transfer (in) for methylene blue biosorption by the coconut husk. Moreover, thermodynamic properties of MB biosorption by coconut husk were studied. Desorption of methylene blue from biomass was studied with different desorbing agents, and the highest desorption achieved was as low as 7.18% with acetone, which indicate stable immobilization. Under the experimental conditions MB sorption was not significantly affected by pH, temperature and adsorbent concentration but low sorption was observed at higher NaCl concentrations.