• Title/Summary/Keyword: first mode shape

Search Result 223, Processing Time 0.03 seconds

An Optimal Design of Sandwich Panels with Wire-woven Bulk Kagome Cores (와이어 직조 카고메 다공질 금속을 심재로 갖는 샌드위치 판재의 최적 설계)

  • Lee, Yong-Hyun;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.782-787
    • /
    • 2008
  • First, the effect of the geometry such as the curved shape of the struts composing the truss structure of WBK is elaborated. Then, analytic solutions for the material properties of WBK and the maximum loads of a WBK-cored sandwich panel under bending are derived. A design optimization with the face sheet thickness and the core height selected as the design variables is presented for given slenderness ratios of the WBK core. Unless the face sheet thickness is limited, the optimal design to give the maximum load per weight is always found at a confluence of three failure modes, namely, face sheet yielding, indentation plastic, and core shear modeB plastic.

Experimental Modal Analysis for Understanding Dynamic Characteristics of Bus Full BIW Assembly (버스차체 동특성 파악을 위한 실험 모드해석)

  • Lee, Joon-Ho;Kim, Gyeong-Ho;Park, Mi-You;Kim, Kyoung-Won;Song, Kyoung-Ho;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.314.2-314
    • /
    • 2002
  • It is necessary first to understand dynamic characteristics of a bus full BIW assembly for fatigue endurance analysis. FE model has been used usually for analyzing the dynamic behavior of structures. A lot of experience and effort, however, is necessary to make a credible FE model. Experimental modal analysis of structures has been performed to verify the credibility of initial FE model and to update the model. (omitted)

  • PDF

Improved Genetic Algorithm-Based Damage Detection Technique Using Modal Strain Energy (모드변형에너지를 이용한 향상된 유전알고리즘 기반 손상검색기법)

  • Park Jae-Hyung;Lee Jung-Mi;Kim Jeong-Tae;Ryu Yeon-Sun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.459-466
    • /
    • 2006
  • The objective of this study is to improve the accuracy of damage detection using natural frequency and modal strain energy. The following approaches are used to achieve the goal. First, modal strain energy is introduced and newly GA-based damage detection technique using natural frequency and modal strain energy is proposed. Next, to verify efficiency of the proposed technique, damage scenarios for free-free beams are designed and the vibration modal tests as damage cases are conducted. Finally, feasibility of proposed technique is verified in comparison with a GA-based damage detection technique using natural frequency and mode shape.

  • PDF

Damage Detection of Cantiler-type Structure by using Modal Parameters (동특성을 이용한 켄틸레버형 구조물의 손상추정)

  • 천영수;김흥식;김하근;강경완
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.494-497
    • /
    • 2001
  • Identification of damage of structures has recently received considerable attention in the light of maintenance and safety assessment. In this respect, the vibration characteristics of buildings have been applied steadily to obtain a damage index of the whole building, but it cannot be established as a practical method until now. A practical method for the estimation of structural damage using the first natural frequency and mode shape of building is proposed in this paper. The effectiveness of the proposed method is verified by numerical and experimental tests. From the results, it is observed that severity and location of damage can be estimated with a relatively small error by using modal properties of building.

  • PDF

Effect of temperature and spring-mass systems on modal properties of Timoshenko concrete beam

  • Liu, Hanbing;Wang, Hua;Tan, Guojin;Wang, Wensheng;Liu, Ziyu
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.389-400
    • /
    • 2018
  • An exact solution for the title problem was obtained in closed-form fashion considering general boundary conditions. The expressions of moment, shear and shear coefficient (or shear factor) of cross section under the effect of arbitrary temperature distribution were first derived. In view of these relationships, the differential equations of Timoshenko beam under the effect of temperature were obtained and solved. Second, the characteristic equations of Timoshenko beam carrying several spring-mass systems under the effect of temperature were derived based on the continuity and force equilibrium conditions at attaching points. Then, the correctness of proposed method was demonstrated by a Timoshenko laboratory beam and several finite element models. Finally, the influence law of different temperature distribution modes and parameters of spring-mass system on the modal characteristics of Timoshenko beam had been studied, respectively.

A simple approach for the fundamental period of MDOF structures

  • Zhao, Yan-Gang;Zhang, Haizhong;Saito, Takasuke
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.231-239
    • /
    • 2017
  • Fundamental period is one of the most critical parameters affecting the seismic design of buildings. In this paper, a very simple approach is presented for estimating the fundamental period of multiple-degree-of-freedom (MDOF) structures. The basic idea behind this approach is to replace the complicated MDOF system with an equivalent single-degree-of-freedom (SDOF) system. To realize this equivalence, a procedure for replacing a two-degree-of-freedom (2-DOF) system with an SDOF system, known as a two-to-single (TTS) procedure, is developed first; then, using the TTS procedure successively, an MDOF system is replaced with an equivalent SDOF system. The proposed approach is expressed in terms of mass, stiffness, and number of stories, without mode shape or any other parameters; thus, it is a very simple method. The accuracy of the proposed method is investigated by estimating the fundamental periods of many MDOF models; it is found that the results obtained by the proposed method agree very well with those obtained by eigenvalue analysis.

TAMAM RWA Micro-Vibration Test and Analysis (TAMAM 반작용휠의 미소진동 측정 및 분석)

  • 오시환;이승우;최홍택;이선호;용기력
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.836-839
    • /
    • 2003
  • In this paper, we briefly introduce the test bench and test method of RWA micro-vibration. TAMAM RWA (Reaction Wheel Assembly) micro-vibration was measured on a KISTLER dynamic plate which can measure time signals of three orthogonal forces and torques simultaneously up to 400Hz, and test data was analyzed. Measured data were evaluated with respect to the wheel spin rate and the static/dynamic unbalances were estimated from the extracted first harmonic component. The estimated static and dynamic unbalances were 0.79gㆍcm and 17.4gㆍ$\textrm{cm}^2$ respectively. The resonance mode and two rocking modes were observed as a results of its frequency analysis. Several higher order harmonic components were observed, which comes from its rotor shape as well as the wheel bearing.

  • PDF

ADINA/FSI Analysis of Petrochemical Plant Column Mixer (화학 플랜트용 칼럼 믹서의 ADINA/FSI 해석)

  • Lee, Won-Suk;Jung, Goo-Choong;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.916-921
    • /
    • 2006
  • Column mixer is one of the facility to mix fluids at petrochemical plants. The column vibration is caused by pumps for fluid inflow and mixing of inside fluids. This fluid induced vibration is mainly responsible for the reduction of column life. Measurements were performed three times for understanding the vibration characteristics of the column. First experimental results showed the need of stiffness reinforcement. After the reinforcement work, second measurement conformed the difference between two results. Modal analysis was also performed to investigate the resonance of the column vibration and the damage of the rib plate. To confirm the generation of the fluid instability in the column mixer fluid structure interaction analysis using ADINA/FSI was performed which showed the necessity of the modification of the rotary valve.

  • PDF

Verification on Damage Calculating Method of Vibration Fatigue Using Uni-axial Vibration Test (단축가진 시험을 통한 진동내구 손상도 계산)

  • Kim, Chan-Jung;Bae, Chul-Yong;Lee, Bong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.521-528
    • /
    • 2006
  • The vibration fatigue is suitable case of fatigue problem that system is exposed to the random or other irregular sources. Even some kinds of effort using power spectral density (PSD) and statistical concept was presented to cope with the intangible force signal, it is still lack of providing a reasonable solution when its exciting frequency is near or beyond of first eigenvalue. In this paper, energy approach method is presented to calculate a vibration induced fatigue damage in frequency domain. Since the corresponding damage become much larger than nominal case when the vibration is coupled with a mode shape of given structure, the new technique compensate the characteristics of structure with a measured frequency response function (FRF) between forcing acceleration and responding stress.

항바이러스제가 단백질의 구조적 거동에 미치는 영향에 대한 유한요소법 기반 분석

  • Yun, Gi-Seok;Kim, Jae-Hun
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.212-216
    • /
    • 2015
  • Oseltamivir, also known as Tamifu, is an inhibitor of neuraminidase protein which plays an essential role in proliferation and replication of influenza virus. Binding to the active site of neuraminidase, the oseltamivir prevents the protein from enzyme reaction. Conformational change of the protein(neuraminidase) should be accompanied by the enzyme reaction, but the drug inhibits the protein to deform. In this study, we examine the influence of oseltamivir on protein's conformational change in the structural and mechanical point of view. Finite element analysis of the protein can be an useful approach to investigate the influence of oseltamivir on the deformation of a protein. We suggest the finite element based protein model, and then perform the linear static analysis with the displacement loading condition based on the first two largest motion which can be obtained from the normal mode analysis. The results show that it takes more energy to change shape of the protein with an oseltamivir attached than the protein without an oseltamivir.

  • PDF