• Title/Summary/Keyword: first eigenvalue

Search Result 259, Processing Time 0.02 seconds

A Study on the Classification of Islands by PCA(II) (PCA에 의한 도서분류에 관한 연구(II))

  • 이강우;남수현
    • The Journal of Fisheries Business Administration
    • /
    • v.15 no.1
    • /
    • pp.58-80
    • /
    • 1984
  • The classification of islands is prerequisite for establishing a development policy to vitalize many-sided function of islands. We try to classify the 440 inhabited islands which exist in Jeon-Nam area and Kyong-Nam area by means of PCA. PCA begins with making correlation matrix of orignal variables. From this matrix we can comprehend the rough relationships between two variables. Next, we look for the eigenvalues which are roots of characteristic equation of correlation matrix. The number of eigenvalues is equal to that of original variables. We choose the largest eigenvalue λ$_1$among them and then look for the eigenvector of correlation matrix corresponding to the largest eigenvalue. Linear combination of eigenvector obtained above and original variables is namely first Principal Component (PC). Using an eigenvalue criterion(λ$\geq$ 1), we choose 3 PCs in Jeon-Nam area and 2 PCs in Kyong-Nam area. But we decide to consider only two PCs in both areas to faciliate a comparative analysis. Now, loss of information is 31.7% in Jeon-Nam area and 26.64% in Kyong-Nam area. PCs extracted by preceding procedure have characteristics as follows. The first PC relates to aggregate size of islands in case of both areas. The second PC relates to income per household, factors of agricultural production and factors of fisheries production in Jeon-Nam area, but in Kyong-Nam area it means distance from island and income per household. A classification of islands can be attained by plotting component scores of each island in graph used two PCs as axes and grouping similiar islands. 6 groups are formed in Jeon-Nam area and 5 groups in Kyong-Nam area. The result of this study in kyong-Nam area accords with prior result of study.

  • PDF

A Study on the Effect of Controllers in Small Signal Stability of Power Systems (전력계통의 미소신호안정도에 미치는 제어기의 영향에 관한 연구)

  • 권세혁;김덕영
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.72-79
    • /
    • 1996
  • The effect of controllers-Exciter, Power System Stabilizer, and Static Var Compensator-in one machine infinite bus system is investigated in this paper. The structure of generator state matrix with controllers is represented, while the Static Var Compensator is installed in generator terminal bus. Eigen-value analysis is performed and the effects of controllers to the dominant eigenvalue in one machine infinite bus system are represented by first order eigenvalue sensitivity coefficients while the operating conditions of the system are varied. Optimization of controller parameters using first order eigenvalue sensitivity coefficients is performed by the Simplex Method. It is proved that exciter control is the most efficient method to improve stability of the system and the effect of Static Var Compensator is small, in the case of one machine infinite bus system.

  • PDF

Free vibration of a rectangular plate with an attached three-degree-of-freedom spring-mass system

  • Febbo, M.;Bambill, D.V.;Rossi, R.E.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.637-654
    • /
    • 2011
  • The present paper studies the variation of the natural frequencies and mode shapes of rectangular plates carrying a three degree-of-freedom spring-mass system (subsystem), when the subsystem changes (stiffness, mass, moment of inertia, location). An analytical approach based on Lagrange multipliers as well as a finite element formulation are employed and compared. Numerically reliable results are presented for the first time, illustrating the convenience of using the present analytical method which requires only the solution of a linear eigenvalue problem. Results obtained through the variation of the mass, stiffness and moment of inertia of the 3-DOF system can be understood under the effective mass concept or Rayleigh's statement. The analysis of frequency values of the whole system, when the 3-DOF system approaches or moves away from the center, shows that the variations depend on each particular mode of vibration. When the 3-DOF system is placed in the center of the plate, "new" modes are found to be a combination of the subsystem's modes (two rotations, traslation) and the bare plate's modes that possess the same symmetry. This situation no longer exists as the 3-DOF system moves away from the center of the plate, since different bare plate's modes enable distinct motions of the 3-DOF system contributing differently to the "new' modes as its location is modified. Also the natural frequencies of the compound system are nearly uncoupled have been calculated by means of a first order eigenvalue perturbation analysis.

Design of BAM using an Optimization approach (최적화기법을 이용한 BAM의 설계)

  • 권철희
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.161-167
    • /
    • 2000
  • In this paper, we propose a design method for BAMs(bidirectiona1 associative memories) which can perform the function of bidirectional association efficiently. Based on the theoretical investigation about the properties of BAMs, we first formulate the problem of finding a BAM that can store the given pattern pairs as stable states with high error correction ratio in the form of a constrained optimization problem. Next, we transform the constrained optimization problem into a GEVP(genera1ized eigenvalue problem), which can be solved by recently developed interior point methods. The applicability of the proposed method is illustrated via design examples.

  • PDF

Estimation Methods for Linear Spatial Model on Lattice (Lattice형 공간정보의 선형모형 추정방법)

  • Gwon, O-Ryong;Yeom, Jun-Geun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.1
    • /
    • pp.153-159
    • /
    • 1996
  • Linear models for spatial data are proposed by example in the paper. This method was introduced to Korea for the first time in the early part of 1990's. The correlation of spatial patterns is computed by Moran Index., and then correlogram is proposed as the method to identify correlation of spatial patterns. Due to computational difficulties with ML, an alternative estimator has been used as an eigenvalue method.

  • PDF

Nondestructive Evaluation of Railway Bridge by System Identification Using Field Vibration Measurement

  • Ho, Duc-Duy;Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.527-538
    • /
    • 2010
  • This paper presents a nondestructive evaluation approach for system identification (SID) of real railway bridges using field vibration test results. First, a multi-phase SID scheme designed on the basis of eigenvalue sensitivity concept is presented. Next, the proposed multi-phase approach is evaluated from field vibration tests on a real railway bridge (Wondongcheon bridge) located in Yangsan, Korea. On the steel girder bridge, a few natural frequencies and mode shapes are experimentally measured under the ambient vibration condition. The corresponding modal parameters are numerically calculated from a three-dimensional finite element (FE) model established for the target bridge. Eigenvalue sensitivities are analyzed for potential model-updating parameters of the FE model. Then, structural subsystems are identified phase-by-phase using the proposed model-updating procedure. Based on model-updating results, a baseline model and a nondestructive evaluation of test bridge are identified.

Vibration and stability of fluid conveying pipes with stochastic parameters

  • Ganesan, R.;Ramu, S. Anantha
    • Structural Engineering and Mechanics
    • /
    • v.3 no.4
    • /
    • pp.313-324
    • /
    • 1995
  • Flexible cantilever pipes conveying fluids with high velocity are analysed for their dynamic response and stability behaviour. The Young's modulus and mass per unit length of the pipe material have a stochastic distribution. The stochastic fields, that model the fluctuations of Young's modulus and mass density are characterized through their respective means, variances and autocorrelation functions or their equivalent power spectral density functions. The stochastic non self-adjoint partial differential equation is solved for the moments of characteristic values, by treating the point fluctuations to be stochastic perturbations. The second-order statistics of vibration frequencies and mode shapes are obtained. The critical flow velocity is first evaluated using the averaged eigenvalue equation. Through the eigenvalue equation, the statistics of vibration frequencies are transformed to yield critical flow velocity statistics. Expressions for the bounds of eigenvalues are obtained, which in turn yield the corresponding bounds for critical flow velocities.

Derivation of formulas for perturbation analysis with modes of close eigenvalues

  • Liu, X.L.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.5
    • /
    • pp.427-440
    • /
    • 2000
  • The formulas for the perturbation analysis with modes of close eigenvalues are derived in this paper. Emphasis is made on the consistency of the straightforward perturbation process, given the complete terms of perturbations in the zeroth-order, which is a form of Rayleigh quotient, and in the higher-orders. By dividing the perturbation of eigenvector into two parts, the first-order perturbation with respect to the modes of close eigenvalues is moved into the zeroth-order perturbation. The normality condition is employed to compute the higher-order perturbations of eigenvector. The algorithm can be condensed to a single mode with a distinct eigenvalue, and this can accelerate the convergence of the perturbation analysis. The example confirms that the perturbation approximation obtained from the suggested procedure is in a good accuracy on the eigenvalues, eigenvectors, and normality.

Performance of Spiked Population Models for Spectrum Sensing

  • Le, Tan-Thanh;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.3
    • /
    • pp.203-209
    • /
    • 2012
  • In order to improve sensing performance when the noise variance is not known, this paper considers a so-called blind spectrum sensing technique that is based on eigenvalue models. In this paper, we employed the spiked population models in order to identify the miss detection probability. At first, we try to estimate the unknown noise variance based on the blind measurements at a secondary location. We then investigate the performance of detection, in terms of both theoretical and empirical aspects, after applying this estimated noise variance result. In addition, we study the effects of the number of SUs and the number of samples on the spectrum sensing performance.